000850193 001__ 850193
000850193 005__ 20210129234523.0
000850193 0247_ $$2doi$$a10.1021/acs.nanolett.7b05217
000850193 0247_ $$2ISSN$$a1530-6984
000850193 0247_ $$2ISSN$$a1530-6992
000850193 0247_ $$2pmid$$apmid:29397751
000850193 0247_ $$2WOS$$aWOS:000427910600048
000850193 037__ $$aFZJ-2018-04267
000850193 082__ $$a540
000850193 1001_ $$0P:(DE-HGF)0$$aChatterjee, Dipanwita$$b0
000850193 245__ $$aUltrathin Au Alloy Nanowires at the Liquid Liquid Interface
000850193 260__ $$aWashington, DC$$bACS Publ.$$c2018
000850193 3367_ $$2DRIVER$$aarticle
000850193 3367_ $$2DataCite$$aOutput Types/Journal article
000850193 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1531922552_29824
000850193 3367_ $$2BibTeX$$aARTICLE
000850193 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850193 3367_ $$00$$2EndNote$$aJournal Article
000850193 520__ $$aUltrathin bimetallic nanowires are of importance and interest for applications in electronic devices such as sensors and heterogeneous catalysts. In this work, we have designed a new, highly reproducible and generalized wet chemical method to synthesize uniform and monodispersed Au-based alloy (AuCu, AuPd, and AuPt) nanowires with tunable composition using microwave-assisted reduction at the liquid–liquid interface. These ultrathin alloy nanowires are below 4 nm in diameter and about 2 μm long. Detailed microstructural characterization shows that the wires have an face centred cubic (FCC) crystal structure, and they have low-energy twin-boundary and stacking-fault defects along the growth direction. The wires exhibit remarkable thermal and mechanical stability that is critical for important applications. The alloy wires exhibit excellent electrocatalytic activity for methanol oxidation in an alkaline medium.
000850193 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000850193 588__ $$aDataset connected to CrossRef
000850193 7001_ $$0P:(DE-HGF)0$$aShetty, Shwetha$$b1
000850193 7001_ $$0P:(DE-Juel1)165314$$aMüller-Caspary, Knut$$b2
000850193 7001_ $$0P:(DE-HGF)0$$aGrieb, Tim$$b3
000850193 7001_ $$0P:(DE-HGF)0$$aKrause, Florian F.$$b4
000850193 7001_ $$0P:(DE-HGF)0$$aSchowalter, Marco$$b5
000850193 7001_ $$0P:(DE-HGF)0$$aRosenauer, Andreas$$b6
000850193 7001_ $$0P:(DE-HGF)0$$aRavishankar, Narayanan$$b7$$eCorresponding author
000850193 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.7b05217$$gVol. 18, no. 3, p. 1903 - 1907$$n3$$p1903–1907$$tNano letters$$v18$$x1530-6984$$y2018
000850193 8564_ $$uhttps://juser.fz-juelich.de/record/850193/files/acs.nanolett.7b05217.pdf$$yRestricted
000850193 8564_ $$uhttps://juser.fz-juelich.de/record/850193/files/acs.nanolett.7b05217.gif?subformat=icon$$xicon$$yRestricted
000850193 8564_ $$uhttps://juser.fz-juelich.de/record/850193/files/acs.nanolett.7b05217.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000850193 8564_ $$uhttps://juser.fz-juelich.de/record/850193/files/acs.nanolett.7b05217.jpg?subformat=icon-180$$xicon-180$$yRestricted
000850193 8564_ $$uhttps://juser.fz-juelich.de/record/850193/files/acs.nanolett.7b05217.jpg?subformat=icon-640$$xicon-640$$yRestricted
000850193 909CO $$ooai:juser.fz-juelich.de:850193$$pVDB
000850193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165314$$aForschungszentrum Jülich$$b2$$kFZJ
000850193 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000850193 9141_ $$y2018
000850193 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850193 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000850193 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000850193 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2015
000850193 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000850193 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000850193 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850193 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850193 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850193 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850193 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000850193 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2015
000850193 920__ $$lyes
000850193 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000850193 980__ $$ajournal
000850193 980__ $$aVDB
000850193 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000850193 980__ $$aUNRESTRICTED