000850193 001__ 850193 000850193 005__ 20210129234523.0 000850193 0247_ $$2doi$$a10.1021/acs.nanolett.7b05217 000850193 0247_ $$2ISSN$$a1530-6984 000850193 0247_ $$2ISSN$$a1530-6992 000850193 0247_ $$2pmid$$apmid:29397751 000850193 0247_ $$2WOS$$aWOS:000427910600048 000850193 037__ $$aFZJ-2018-04267 000850193 082__ $$a540 000850193 1001_ $$0P:(DE-HGF)0$$aChatterjee, Dipanwita$$b0 000850193 245__ $$aUltrathin Au Alloy Nanowires at the Liquid Liquid Interface 000850193 260__ $$aWashington, DC$$bACS Publ.$$c2018 000850193 3367_ $$2DRIVER$$aarticle 000850193 3367_ $$2DataCite$$aOutput Types/Journal article 000850193 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1531922552_29824 000850193 3367_ $$2BibTeX$$aARTICLE 000850193 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000850193 3367_ $$00$$2EndNote$$aJournal Article 000850193 520__ $$aUltrathin bimetallic nanowires are of importance and interest for applications in electronic devices such as sensors and heterogeneous catalysts. In this work, we have designed a new, highly reproducible and generalized wet chemical method to synthesize uniform and monodispersed Au-based alloy (AuCu, AuPd, and AuPt) nanowires with tunable composition using microwave-assisted reduction at the liquid–liquid interface. These ultrathin alloy nanowires are below 4 nm in diameter and about 2 μm long. Detailed microstructural characterization shows that the wires have an face centred cubic (FCC) crystal structure, and they have low-energy twin-boundary and stacking-fault defects along the growth direction. The wires exhibit remarkable thermal and mechanical stability that is critical for important applications. The alloy wires exhibit excellent electrocatalytic activity for methanol oxidation in an alkaline medium. 000850193 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0 000850193 588__ $$aDataset connected to CrossRef 000850193 7001_ $$0P:(DE-HGF)0$$aShetty, Shwetha$$b1 000850193 7001_ $$0P:(DE-Juel1)165314$$aMüller-Caspary, Knut$$b2 000850193 7001_ $$0P:(DE-HGF)0$$aGrieb, Tim$$b3 000850193 7001_ $$0P:(DE-HGF)0$$aKrause, Florian F.$$b4 000850193 7001_ $$0P:(DE-HGF)0$$aSchowalter, Marco$$b5 000850193 7001_ $$0P:(DE-HGF)0$$aRosenauer, Andreas$$b6 000850193 7001_ $$0P:(DE-HGF)0$$aRavishankar, Narayanan$$b7$$eCorresponding author 000850193 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.7b05217$$gVol. 18, no. 3, p. 1903 - 1907$$n3$$p1903–1907$$tNano letters$$v18$$x1530-6984$$y2018 000850193 8564_ $$uhttps://juser.fz-juelich.de/record/850193/files/acs.nanolett.7b05217.pdf$$yRestricted 000850193 8564_ $$uhttps://juser.fz-juelich.de/record/850193/files/acs.nanolett.7b05217.gif?subformat=icon$$xicon$$yRestricted 000850193 8564_ $$uhttps://juser.fz-juelich.de/record/850193/files/acs.nanolett.7b05217.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000850193 8564_ $$uhttps://juser.fz-juelich.de/record/850193/files/acs.nanolett.7b05217.jpg?subformat=icon-180$$xicon-180$$yRestricted 000850193 8564_ $$uhttps://juser.fz-juelich.de/record/850193/files/acs.nanolett.7b05217.jpg?subformat=icon-640$$xicon-640$$yRestricted 000850193 909CO $$ooai:juser.fz-juelich.de:850193$$pVDB 000850193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165314$$aForschungszentrum Jülich$$b2$$kFZJ 000850193 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0 000850193 9141_ $$y2018 000850193 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000850193 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000850193 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000850193 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2015 000850193 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000850193 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000850193 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000850193 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000850193 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000850193 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000850193 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000850193 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2015 000850193 920__ $$lyes 000850193 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0 000850193 980__ $$ajournal 000850193 980__ $$aVDB 000850193 980__ $$aI:(DE-Juel1)ER-C-1-20170209 000850193 980__ $$aUNRESTRICTED