000850195 001__ 850195
000850195 005__ 20210129234523.0
000850195 0247_ $$2doi$$a10.1038/srep37146
000850195 0247_ $$2Handle$$a2128/19377
000850195 0247_ $$2pmid$$apmid:27849001
000850195 0247_ $$2WOS$$aWOS:000388081000001
000850195 037__ $$aFZJ-2018-04269
000850195 041__ $$aEnglish
000850195 082__ $$a000
000850195 1001_ $$0P:(DE-Juel1)165314$$aMüller-Caspary, Knut$$b0$$eCorresponding author
000850195 245__ $$aMaterials characterisation by angle-resolved scanning transmission electron microscopy
000850195 260__ $$aLondon$$bNature Publishing Group$$c2016
000850195 3367_ $$2DRIVER$$aarticle
000850195 3367_ $$2DataCite$$aOutput Types/Journal article
000850195 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1531836757_18941
000850195 3367_ $$2BibTeX$$aARTICLE
000850195 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850195 3367_ $$00$$2EndNote$$aJournal Article
000850195 520__ $$aSolid-state properties such as strain or chemical composition often leave characteristic fingerprints in the angular dependence of electron scattering. Scanning transmission electron microscopy (STEM) is dedicated to probe scattered intensity with atomic resolution, but it drastically lacks angular resolution. Here we report both a setup to exploit the explicit angular dependence of scattered intensity and applications of angle-resolved STEM to semiconductor nanostructures. Our method is applied to measure nitrogen content and specimen thickness in a GaNxAs1−x layer independently at atomic resolution by evaluating two dedicated angular intervals. We demonstrate contrast formation due to strain and composition in a Si- based metal-oxide semiconductor field effect transistor (MOSFET) with GexSi1−x stressors as a function of the angles used for imaging. To shed light on the validity of current theoretical approaches this data is compared with theory, namely the Rutherford approach and contemporary multislice simulations. Inconsistency is found for the Rutherford model in the whole angular range of 16–255 mrad. Contrary, the multislice simulations are applicable for angles larger than 35 mrad whereas a significant mismatch is observed at lower angles. This limitation of established simulations is discussed particularly on the basis of inelastic scattering.
000850195 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000850195 7001_ $$0P:(DE-HGF)0$$aOppermann, Oliver$$b1
000850195 7001_ $$0P:(DE-HGF)0$$aGrieb, Tim$$b2
000850195 7001_ $$0P:(DE-HGF)0$$aKrause, Florian F.$$b3
000850195 7001_ $$0P:(DE-HGF)0$$aRosenauer, Andreas$$b4
000850195 7001_ $$0P:(DE-HGF)0$$aMarco$$b5
000850195 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/srep37146$$p37146$$tScientific reports$$v6$$x2045-2322$$y2016
000850195 8564_ $$uhttps://juser.fz-juelich.de/record/850195/files/srep37146.pdf$$yOpenAccess
000850195 8564_ $$uhttps://juser.fz-juelich.de/record/850195/files/srep37146.gif?subformat=icon$$xicon$$yOpenAccess
000850195 8564_ $$uhttps://juser.fz-juelich.de/record/850195/files/srep37146.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000850195 8564_ $$uhttps://juser.fz-juelich.de/record/850195/files/srep37146.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000850195 8564_ $$uhttps://juser.fz-juelich.de/record/850195/files/srep37146.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000850195 909CO $$ooai:juser.fz-juelich.de:850195$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000850195 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165314$$aForschungszentrum Jülich$$b0$$kFZJ
000850195 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000850195 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850195 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000850195 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000850195 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000850195 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2015
000850195 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2015
000850195 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000850195 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000850195 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850195 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850195 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850195 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000850195 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000850195 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000850195 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000850195 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850195 920__ $$lyes
000850195 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000850195 980__ $$ajournal
000850195 980__ $$aVDB
000850195 980__ $$aUNRESTRICTED
000850195 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000850195 9801_ $$aFullTexts