000850198 001__ 850198 000850198 005__ 20210129234525.0 000850198 0247_ $$2doi$$a10.1021/nl502259w 000850198 0247_ $$2pmid$$apmid:25004463 000850198 0247_ $$2WOS$$aWOS:000340446200102 000850198 037__ $$aFZJ-2018-04272 000850198 041__ $$aEnglish 000850198 082__ $$a540 000850198 1001_ $$0P:(DE-HGF)0$$aRoy, Ahin$$b0 000850198 245__ $$aWrinkling of Atomic Planes in Ultrathin Au Nanowires 000850198 260__ $$aWashington, DC$$bACS Publ.$$c2014 000850198 3367_ $$2DRIVER$$aarticle 000850198 3367_ $$2DataCite$$aOutput Types/Journal article 000850198 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1531838317_18945 000850198 3367_ $$2BibTeX$$aARTICLE 000850198 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000850198 3367_ $$00$$2EndNote$$aJournal Article 000850198 520__ $$aA detailed understanding of structure and stability of nanowires is critical for applications. Atomic resolution imaging of ultrathin single crystalline Au nanowires using aberration-corrected microscopy reveals an intriguing relaxation whereby the atoms in the close-packed atomic planes normal to the growth direction are displaced in the axial direction leading to wrinkling of the (111) atomic plane normal to the wire axis. First-principles calculations of the structure of such nanowires confirm this wrinkling phenomenon, whereby the close-packed planes relax to form saddle-like surfaces. Molecular dynamics studies of wires with varying diameters and different bounding surfaces point to the key role of surface stress on the relaxation process. Using continuum mechanics arguments, we show that the wrinkling arises due to anisotropy in the surface stresses and in the elastic response, along with the divergence of surface-induced bulk stress near the edges of a faceted structure. The observations provide new understanding on the equilibrium structure of nanoscale systems and could have important implications for applications in sensing and actuation. 000850198 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0 000850198 7001_ $$0P:(DE-HGF)0$$aKundu, Subhajit$$b1 000850198 7001_ $$0P:(DE-Juel1)165314$$aMüller-Caspary, Knut$$b2$$ufzj 000850198 7001_ $$0P:(DE-HGF)0$$aRosenauer, Andreas$$b3 000850198 7001_ $$0P:(DE-HGF)0$$aSingh, Saransh$$b4 000850198 7001_ $$0P:(DE-HGF)0$$aPant, Prita$$b5 000850198 7001_ $$0P:(DE-HGF)0$$aGururajan, M. P.$$b6 000850198 7001_ $$0P:(DE-HGF)0$$aKumar, Praveen$$b7 000850198 7001_ $$0P:(DE-HGF)0$$aWeissmüller, J.$$b8 000850198 7001_ $$0P:(DE-HGF)0$$aKumar Singh, Abhishek$$b9 000850198 7001_ $$0P:(DE-HGF)0$$aRavishankar, N.$$b10$$eCorresponding author 000850198 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/nl502259w$$n8$$p4859 - 4866$$tNano letters$$v14$$x1530-6984$$y2014 000850198 8564_ $$uhttps://juser.fz-juelich.de/record/850198/files/nl502259w.pdf$$yRestricted 000850198 8564_ $$uhttps://juser.fz-juelich.de/record/850198/files/nl502259w.gif?subformat=icon$$xicon$$yRestricted 000850198 8564_ $$uhttps://juser.fz-juelich.de/record/850198/files/nl502259w.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000850198 8564_ $$uhttps://juser.fz-juelich.de/record/850198/files/nl502259w.jpg?subformat=icon-180$$xicon-180$$yRestricted 000850198 8564_ $$uhttps://juser.fz-juelich.de/record/850198/files/nl502259w.jpg?subformat=icon-640$$xicon-640$$yRestricted 000850198 909CO $$ooai:juser.fz-juelich.de:850198$$pVDB 000850198 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165314$$aForschungszentrum Jülich$$b2$$kFZJ 000850198 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0 000850198 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000850198 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000850198 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000850198 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2015 000850198 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000850198 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000850198 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000850198 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000850198 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000850198 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000850198 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000850198 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2015 000850198 920__ $$lyes 000850198 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0 000850198 980__ $$ajournal 000850198 980__ $$aVDB 000850198 980__ $$aI:(DE-Juel1)ER-C-1-20170209 000850198 980__ $$aUNRESTRICTED