000850200 001__ 850200
000850200 005__ 20210129234526.0
000850200 0247_ $$2doi$$a10.1038/srep04633
000850200 0247_ $$2Handle$$a2128/19382
000850200 0247_ $$2pmid$$apmid:24717601
000850200 0247_ $$2WOS$$aWOS:000334022700001
000850200 037__ $$aFZJ-2018-04274
000850200 041__ $$aEnglish
000850200 082__ $$a000
000850200 1001_ $$0P:(DE-HGF)0$$aJuluri, R. R.$$b0
000850200 245__ $$aCoherently Embedded Ag Nanostructures in Si: 3D Imaging and their application to SERS
000850200 260__ $$aLondon$$bNature Publishing Group$$c2014
000850200 3367_ $$2DRIVER$$aarticle
000850200 3367_ $$2DataCite$$aOutput Types/Journal article
000850200 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1531894655_18943
000850200 3367_ $$2BibTeX$$aARTICLE
000850200 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850200 3367_ $$00$$2EndNote$$aJournal Article
000850200 520__ $$aSurface enhanced Raman spectroscopy (SERS) has been established as a powerful tool to detect very low-concentration bio-molecules. One of the challenging problems is to have reliable and robust SERS substrate. Here, we report on a simple method to grow coherently embedded (endotaxial) silver nanostructures in silicon substrates, analyze their three-dimensional shape by scanning transmission electron microscopy tomography and demonstrate their use as a highly reproducible and stable substrate for SERS measurements. Bi-layers consisting of Ag and GeOx thin films were grown on native oxide covered silicon substrate using a physical vapor deposition method. Followed by annealing at 800°C under ambient conditions, this resulted in the formation of endotaxial Ag nanostructures of specific shape depending upon the substrate orientation. These structures are utilized for detection of Crystal Violet molecules of 5 × 10−10 M concentrations. These are expected to be one of the highly robust, reusable and novel substrates for single molecule detection.
000850200 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000850200 7001_ $$0P:(DE-HGF)0$$aRath, A.$$b1
000850200 7001_ $$0P:(DE-HGF)0$$aGhosh, A.$$b2
000850200 7001_ $$0P:(DE-HGF)0$$aBhukta, A.$$b3
000850200 7001_ $$0P:(DE-HGF)0$$aSathyavathi, R.$$b4
000850200 7001_ $$0P:(DE-HGF)0$$aNarayana Rao, D.$$b5
000850200 7001_ $$0P:(DE-Juel1)165314$$aMüller-Caspary, Knut$$b6$$ufzj
000850200 7001_ $$0P:(DE-HGF)0$$aSchowalter, Marco$$b7
000850200 7001_ $$0P:(DE-HGF)0$$aFrank, Kristian$$b8
000850200 7001_ $$0P:(DE-HGF)0$$aGrieb, Tim$$b9
000850200 7001_ $$0P:(DE-Juel1)174034$$aKrause, Florian$$b10
000850200 7001_ $$0P:(DE-HGF)0$$aRosenauer, Andreas$$b11
000850200 7001_ $$0P:(DE-HGF)0$$aSatyam, Parlapalli Vencata$$b12$$eCorresponding author
000850200 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/srep04633$$p4633$$tScientific reports$$v4$$x2045-2322$$y2014
000850200 8564_ $$uhttps://juser.fz-juelich.de/record/850200/files/srep04633.pdf$$yOpenAccess
000850200 8564_ $$uhttps://juser.fz-juelich.de/record/850200/files/srep04633.gif?subformat=icon$$xicon$$yOpenAccess
000850200 8564_ $$uhttps://juser.fz-juelich.de/record/850200/files/srep04633.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000850200 8564_ $$uhttps://juser.fz-juelich.de/record/850200/files/srep04633.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000850200 8564_ $$uhttps://juser.fz-juelich.de/record/850200/files/srep04633.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000850200 909CO $$ooai:juser.fz-juelich.de:850200$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000850200 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165314$$aForschungszentrum Jülich$$b6$$kFZJ
000850200 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000850200 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850200 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000850200 915__ $$0LIC:(DE-HGF)CCBYNCSA3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-ShareAlike CC BY-NC-SA 3.0
000850200 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000850200 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2015
000850200 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2015
000850200 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000850200 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000850200 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850200 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850200 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850200 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000850200 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000850200 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000850200 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000850200 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850200 920__ $$lyes
000850200 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000850200 980__ $$ajournal
000850200 980__ $$aVDB
000850200 980__ $$aUNRESTRICTED
000850200 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000850200 9801_ $$aFullTexts