001     850200
005     20210129234526.0
024 7 _ |a 10.1038/srep04633
|2 doi
024 7 _ |a 2128/19382
|2 Handle
024 7 _ |a pmid:24717601
|2 pmid
024 7 _ |a WOS:000334022700001
|2 WOS
037 _ _ |a FZJ-2018-04274
041 _ _ |a English
082 _ _ |a 000
100 1 _ |a Juluri, R. R.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Coherently Embedded Ag Nanostructures in Si: 3D Imaging and their application to SERS
260 _ _ |a London
|c 2014
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1531894655_18943
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Surface enhanced Raman spectroscopy (SERS) has been established as a powerful tool to detect very low-concentration bio-molecules. One of the challenging problems is to have reliable and robust SERS substrate. Here, we report on a simple method to grow coherently embedded (endotaxial) silver nanostructures in silicon substrates, analyze their three-dimensional shape by scanning transmission electron microscopy tomography and demonstrate their use as a highly reproducible and stable substrate for SERS measurements. Bi-layers consisting of Ag and GeOx thin films were grown on native oxide covered silicon substrate using a physical vapor deposition method. Followed by annealing at 800°C under ambient conditions, this resulted in the formation of endotaxial Ag nanostructures of specific shape depending upon the substrate orientation. These structures are utilized for detection of Crystal Violet molecules of 5 × 10−10 M concentrations. These are expected to be one of the highly robust, reusable and novel substrates for single molecule detection.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
700 1 _ |a Rath, A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ghosh, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bhukta, A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sathyavathi, R.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Narayana Rao, D.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Müller-Caspary, Knut
|0 P:(DE-Juel1)165314
|b 6
|u fzj
700 1 _ |a Schowalter, Marco
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Frank, Kristian
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Grieb, Tim
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Krause, Florian
|0 P:(DE-Juel1)174034
|b 10
700 1 _ |a Rosenauer, Andreas
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Satyam, Parlapalli Vencata
|0 P:(DE-HGF)0
|b 12
|e Corresponding author
773 _ _ |a 10.1038/srep04633
|0 PERI:(DE-600)2615211-3
|p 4633
|t Scientific reports
|v 4
|y 2014
|x 2045-2322
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/850200/files/srep04633.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/850200/files/srep04633.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/850200/files/srep04633.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/850200/files/srep04633.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/850200/files/srep04633.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:850200
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)165314
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution-NonCommercial-ShareAlike CC BY-NC-SA 3.0
|0 LIC:(DE-HGF)CCBYNCSA3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21