Home > Publications database > Coherently Embedded Ag Nanostructures in Si: 3D Imaging and their application to SERS > print |
001 | 850200 | ||
005 | 20210129234526.0 | ||
024 | 7 | _ | |a 10.1038/srep04633 |2 doi |
024 | 7 | _ | |a 2128/19382 |2 Handle |
024 | 7 | _ | |a pmid:24717601 |2 pmid |
024 | 7 | _ | |a WOS:000334022700001 |2 WOS |
037 | _ | _ | |a FZJ-2018-04274 |
041 | _ | _ | |a English |
082 | _ | _ | |a 000 |
100 | 1 | _ | |a Juluri, R. R. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Coherently Embedded Ag Nanostructures in Si: 3D Imaging and their application to SERS |
260 | _ | _ | |a London |c 2014 |b Nature Publishing Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1531894655_18943 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Surface enhanced Raman spectroscopy (SERS) has been established as a powerful tool to detect very low-concentration bio-molecules. One of the challenging problems is to have reliable and robust SERS substrate. Here, we report on a simple method to grow coherently embedded (endotaxial) silver nanostructures in silicon substrates, analyze their three-dimensional shape by scanning transmission electron microscopy tomography and demonstrate their use as a highly reproducible and stable substrate for SERS measurements. Bi-layers consisting of Ag and GeOx thin films were grown on native oxide covered silicon substrate using a physical vapor deposition method. Followed by annealing at 800°C under ambient conditions, this resulted in the formation of endotaxial Ag nanostructures of specific shape depending upon the substrate orientation. These structures are utilized for detection of Crystal Violet molecules of 5 × 10−10 M concentrations. These are expected to be one of the highly robust, reusable and novel substrates for single molecule detection. |
536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |f POF III |x 0 |
700 | 1 | _ | |a Rath, A. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Ghosh, A. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Bhukta, A. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Sathyavathi, R. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Narayana Rao, D. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Müller-Caspary, Knut |0 P:(DE-Juel1)165314 |b 6 |u fzj |
700 | 1 | _ | |a Schowalter, Marco |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Frank, Kristian |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Grieb, Tim |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Krause, Florian |0 P:(DE-Juel1)174034 |b 10 |
700 | 1 | _ | |a Rosenauer, Andreas |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Satyam, Parlapalli Vencata |0 P:(DE-HGF)0 |b 12 |e Corresponding author |
773 | _ | _ | |a 10.1038/srep04633 |0 PERI:(DE-600)2615211-3 |p 4633 |t Scientific reports |v 4 |y 2014 |x 2045-2322 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/850200/files/srep04633.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/850200/files/srep04633.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/850200/files/srep04633.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/850200/files/srep04633.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/850200/files/srep04633.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:850200 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)165314 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-ShareAlike CC BY-NC-SA 3.0 |0 LIC:(DE-HGF)CCBYNCSA3 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2015 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b SCI REP-UK : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|