000850202 001__ 850202
000850202 005__ 20210129234527.0
000850202 0247_ $$2doi$$a10.1016/j.ultramic.2018.03.013
000850202 0247_ $$2pmid$$apmid:29783102
000850202 0247_ $$2WOS$$aWOS:000432868800006
000850202 037__ $$aFZJ-2018-04276
000850202 041__ $$aEnglish
000850202 082__ $$a570
000850202 1001_ $$0P:(DE-HGF)0$$aGrieb, Tim$$b0$$eCorresponding author
000850202 245__ $$aStrain analysis from nano-beam electron diffraction: Influence of specimen tilt and beam convergence
000850202 260__ $$aAmsterdam$$bElsevier Science$$c2018
000850202 3367_ $$2DRIVER$$aarticle
000850202 3367_ $$2DataCite$$aOutput Types/Journal article
000850202 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1531837001_18943
000850202 3367_ $$2BibTeX$$aARTICLE
000850202 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850202 3367_ $$00$$2EndNote$$aJournal Article
000850202 520__ $$aStrain analyses from experimental series of nano-beam electron diffraction (NBED) patterns in scanning transmission electron microscopy are performed for different specimen tilts. Simulations of NBED series are presented for which strain analysis gives results that are in accordance with experiment. This consequently allows to study the relation between measured strain and actual underlying strain. A two-tilt method which can be seen as lowest-order electron beam precession is suggested and experimentally implemented. Strain determination from NBED series with increasing beam convergence is performed in combination with the experimental realization of a probe-forming aperture with a cross inside. It is shown that using standard evaluation techniques, the influence of beam convergence on spatial resolution is lower than the influence of sharp rings around the diffraction disc which occur at interfaces and which are caused by the tails of the intensity distribution of the electron probe.
000850202 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000850202 7001_ $$0P:(DE-HGF)0$$aKrause, Florian F.$$b1
000850202 7001_ $$0P:(DE-HGF)0$$aSchowalter, Marco$$b2
000850202 7001_ $$0P:(DE-HGF)0$$aZillmann, Dennis$$b3
000850202 7001_ $$0P:(DE-HGF)0$$aSellin, Roman$$b4
000850202 7001_ $$0P:(DE-Juel1)165314$$aMüller-Caspary, Knut$$b5$$ufzj
000850202 7001_ $$0P:(DE-HGF)0$$aMahr, Christoph$$b6
000850202 7001_ $$0P:(DE-HGF)0$$aMehrtens, Thorsten$$b7
000850202 7001_ $$0P:(DE-HGF)0$$aBimberg, Dieter$$b8
000850202 7001_ $$0P:(DE-HGF)0$$aRosenauer, Andreas$$b9
000850202 773__ $$0PERI:(DE-600)1479043-9$$a10.1016/j.ultramic.2018.03.013$$p45 - 57$$tUltramicroscopy$$v190$$x0304-3991$$y2018
000850202 8564_ $$uhttps://juser.fz-juelich.de/record/850202/files/1-s2.0-S0304399117305132-main.pdf$$yRestricted
000850202 8564_ $$uhttps://juser.fz-juelich.de/record/850202/files/1-s2.0-S0304399117305132-main.gif?subformat=icon$$xicon$$yRestricted
000850202 8564_ $$uhttps://juser.fz-juelich.de/record/850202/files/1-s2.0-S0304399117305132-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000850202 8564_ $$uhttps://juser.fz-juelich.de/record/850202/files/1-s2.0-S0304399117305132-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000850202 8564_ $$uhttps://juser.fz-juelich.de/record/850202/files/1-s2.0-S0304399117305132-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000850202 909CO $$ooai:juser.fz-juelich.de:850202$$pVDB
000850202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165314$$aForschungszentrum Jülich$$b5$$kFZJ
000850202 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000850202 9141_ $$y2018
000850202 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000850202 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bULTRAMICROSCOPY : 2015
000850202 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850202 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000850202 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000850202 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000850202 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000850202 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850202 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850202 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850202 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850202 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000850202 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000850202 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000850202 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000850202 920__ $$lyes
000850202 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000850202 980__ $$ajournal
000850202 980__ $$aVDB
000850202 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000850202 980__ $$aUNRESTRICTED