000850241 001__ 850241
000850241 005__ 20210129234534.0
000850241 0247_ $$2doi$$a10.1109/TMI.2017.2786466
000850241 0247_ $$2ISSN$$a0278-0062
000850241 0247_ $$2ISSN$$a1558-0062
000850241 0247_ $$2ISSN$$a1558-254X
000850241 0247_ $$2pmid$$apmid:29990262
000850241 0247_ $$2WOS$$aWOS:000437280500009
000850241 037__ $$aFZJ-2018-04296
000850241 082__ $$a610
000850241 1001_ $$0P:(DE-Juel1)159538$$aHa, Yonghyun$$b0
000850241 245__ $$aDevelopment and Implementation of a PIN-Diode Controlled, Quadrature-Enhanced, Double-Tuned RF Coil for Sodium MRI
000850241 260__ $$aNew York, NY$$bInstitute of Electrical and Electronics Engineers,$$c2018
000850241 3367_ $$2DRIVER$$aarticle
000850241 3367_ $$2DataCite$$aOutput Types/Journal article
000850241 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1531987413_31864
000850241 3367_ $$2BibTeX$$aARTICLE
000850241 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850241 3367_ $$00$$2EndNote$$aJournal Article
000850241 520__ $$aSodium (23Na) MRI provides complementarycellular and metabolic information. However, the intrinsicMR sensitivity of 23Na is considerably lower comparedwith that of the proton, making it difficult to measureMR-detectable sodium signals. It is therefore importantto maintain the signal-to-noise ratio (SNR) of the sodiumsignal as high as possible. Double-tuned coils are oftenemployed in combinationwith a 1H coil, providing structuralimages and B0 shimming capability. The double-tuned coildesign can be achieved with the use of two geometricallydecoupled coilswhoseB1 field directions are perpendicularto each other. This can be used to design quadrature-driven,single-nucleus coils to improve SNR, and additionally, thiscoil can also be utilized as a linear-driven double-resonantmode. Here,we have developed and evaluateda quadratureenhanced,double-tuned coil. The novel coil usesPIN-diode switches, inserted only in the loop coil, toshift the resonance frequency between 1H and 23Na sothat 23Na signals can be acquired in quadrature and thecapability of using 1H function remains. Consequently,the 23Na SNR values obtained with the double-tunedcoil are nearly 33% and 17% higher in comparison withgeometrically identical single-tuned coils. SNR plots alsoshow the superiority of double-tuned coil in 23Na.
000850241 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000850241 588__ $$aDataset connected to CrossRef
000850241 7001_ $$0P:(DE-Juel1)164356$$aChoi, Chang-Hoon$$b1
000850241 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b2$$eCorresponding author$$ufzj
000850241 773__ $$0PERI:(DE-600)2068206-2$$a10.1109/TMI.2017.2786466$$gVol. 37, no. 7, p. 1626 - 1631$$n7$$p1626 - 1631$$tIEEE transactions on medical imaging$$v37$$x1558-254X$$y2018
000850241 8564_ $$uhttps://juser.fz-juelich.de/record/850241/files/08234690.pdf$$yRestricted
000850241 8564_ $$uhttps://juser.fz-juelich.de/record/850241/files/08234690.gif?subformat=icon$$xicon$$yRestricted
000850241 8564_ $$uhttps://juser.fz-juelich.de/record/850241/files/08234690.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000850241 8564_ $$uhttps://juser.fz-juelich.de/record/850241/files/08234690.jpg?subformat=icon-180$$xicon-180$$yRestricted
000850241 8564_ $$uhttps://juser.fz-juelich.de/record/850241/files/08234690.jpg?subformat=icon-640$$xicon-640$$yRestricted
000850241 909CO $$ooai:juser.fz-juelich.de:850241$$pVDB
000850241 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159538$$aForschungszentrum Jülich$$b0$$kFZJ
000850241 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164356$$aForschungszentrum Jülich$$b1$$kFZJ
000850241 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b2$$kFZJ
000850241 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000850241 9141_ $$y2018
000850241 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000850241 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T MED IMAGING : 2015
000850241 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850241 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000850241 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000850241 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850241 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850241 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850241 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850241 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000850241 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000850241 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000850241 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000850241 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x1
000850241 980__ $$ajournal
000850241 980__ $$aVDB
000850241 980__ $$aI:(DE-Juel1)INM-4-20090406
000850241 980__ $$aI:(DE-82)080010_20140620
000850241 980__ $$aUNRESTRICTED