000850283 001__ 850283
000850283 005__ 20240711092228.0
000850283 0247_ $$2Handle$$a2128/19509
000850283 0247_ $$2ISSN$$a1866-1793
000850283 020__ $$a978-3-95806-340-2
000850283 037__ $$aFZJ-2018-04325
000850283 041__ $$aGerman
000850283 1001_ $$0P:(DE-Juel1)161483$$aThaler, Florian$$b0$$eCorresponding author$$gmale$$ufzj
000850283 245__ $$aDer Einfluss von Wasserdampf auf den Sauerstofftransport in keramischen Hochtemperaturmembranen$$f- 2018-08-03
000850283 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2018
000850283 300__ $$aii, 93, XXXI S.
000850283 3367_ $$2DataCite$$aOutput Types/Dissertation
000850283 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000850283 3367_ $$2ORCID$$aDISSERTATION
000850283 3367_ $$2BibTeX$$aPHDTHESIS
000850283 3367_ $$02$$2EndNote$$aThesis
000850283 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1533272832_24986
000850283 3367_ $$2DRIVER$$adoctoralThesis
000850283 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v430
000850283 502__ $$aRWTH Aachen, Diss., 2018$$bDissertation$$cRWTH Aachen$$d2018
000850283 520__ $$aCeramic high temperature oxygen transport membranes (OTMs) represent a promising alternative for the extraction of oxygen from ambient air compared to conventional high-energy intensive processes like cryogenic air separation. Especially materials with a mixed ionic and electronic conductivity (MIEC) are of current interest as O$^{2-}$-ion conductors. The high number of vacancies and the high mobility for electrons at sufficient high temperature and partial pressure gradient, enables these materials to transport oxygen via the crystal lattice and achieve a 100% selectivity. Due to their high conductivities, mostly perovskites or a combination of fluorite- and spinel-phases are used as OTM-materials. Depending on the application, OTMs can be used either directly for the oxygen production or in a so-called membrane reactor where chemical reactions are controlled by selective oxidation of particular reactants. This work examines the so-called "oxyfuel-combustion", where fossil fuels like coal are combusted under pure oxygen atmosphere in a power plant, to reduce NOx-emissions and make the combustion more efficient. A OTM-module implemented in the power plant should provide the needed amount of oxygen. The flue gas of such a oxyfuel power plant consist, except for H$_{2}$O and traces of SO$_{2}$, of a pure CO$_{2}$-stream which can be directly used for Carbon Dioxide Capture and Storage. To reduce the high temperatures occurring in the oxyfuel-combustion and to flush the oxygen from the membrane module, usually recycled flue gas is used. Unfortunately some of the most promising OTMmaterials show degradations facing CO2 and CO from the flue gas. Therefore a new concept was invented, where water vapor is used to sweep the membrane instead of the aggressive flue gas. On this point the current work deals with lab-scale experiments on different membrane materials in a permeation measurement setup with humidied sweep gas. Several OTM-materials are investigated concerning their long-term stability and the degradation of the permeation performance while using different amounts of water vapor in the sweep. All tested materials show a decreasing permeation rate for oxygen with increasing water content. The reason for this declined performance can be explained by miscellaneous materials corrosion and degradation mechanisms, which are discussed in the results part.
000850283 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000850283 8564_ $$uhttps://juser.fz-juelich.de/record/850283/files/Energie_Umwelt_430.pdf$$yOpenAccess
000850283 8564_ $$uhttps://juser.fz-juelich.de/record/850283/files/Energie_Umwelt_430.gif?subformat=icon$$xicon$$yOpenAccess
000850283 8564_ $$uhttps://juser.fz-juelich.de/record/850283/files/Energie_Umwelt_430.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000850283 8564_ $$uhttps://juser.fz-juelich.de/record/850283/files/Energie_Umwelt_430.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000850283 8564_ $$uhttps://juser.fz-juelich.de/record/850283/files/Energie_Umwelt_430.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000850283 909CO $$ooai:juser.fz-juelich.de:850283$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000850283 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000850283 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000850283 9141_ $$y2018
000850283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161483$$aForschungszentrum Jülich$$b0$$kFZJ
000850283 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000850283 920__ $$lyes
000850283 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000850283 9801_ $$aFullTexts
000850283 980__ $$aphd
000850283 980__ $$aVDB
000850283 980__ $$aUNRESTRICTED
000850283 980__ $$abook
000850283 980__ $$aI:(DE-Juel1)IEK-2-20101013
000850283 981__ $$aI:(DE-Juel1)IMD-1-20101013