000850285 001__ 850285 000850285 005__ 20210129234541.0 000850285 0247_ $$2Handle$$a2128/19490 000850285 0247_ $$2ISSN$$a1866-1777 000850285 020__ $$a978-3-95806-328-0 000850285 037__ $$aFZJ-2018-04327 000850285 1001_ $$0P:(DE-Juel1)162281$$aZamborlini, Giovanni$$b0$$eCorresponding author$$gmale$$ufzj 000850285 245__ $$aOrganic-Metal Hybrid Interfaces at the Mesoscopic Scale$$f- 2018-07-18 000850285 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2018 000850285 300__ $$axi, 133 S. 000850285 3367_ $$2DataCite$$aOutput Types/Dissertation 000850285 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook 000850285 3367_ $$2ORCID$$aDISSERTATION 000850285 3367_ $$2BibTeX$$aPHDTHESIS 000850285 3367_ $$02$$2EndNote$$aThesis 000850285 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1533129210_23007 000850285 3367_ $$2DRIVER$$adoctoralThesis 000850285 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Information / Information$$v55 000850285 502__ $$aUniversität Duisburg, Diss., 2018$$bDissertation$$cUniversität Duisburg$$d2018 000850285 520__ $$aThe molecule-substrate interaction plays a key role in controlling charge injection in organic based devices. Charge transfer at the molecule-metal interface strongly affects the overall physical and magnetic properties of the system, and ultimately the device performance. This thesis reports theoretical and experimental evidence of an unexpectedly high charge transfer rate to nickel tetraphenyl porphyrin (NiTPP) molecules adsorbed on Cu(100). The exceptional charge transfer leads to the filling of the unoccupied orbitals up to LUMO+3. As a consequence of this strong interaction with the substrate, the resulting adsorption geometry is highly distorted. For this reason, scanning tunneling spectroscopy cannot reliably probe the states related to the macrocycle. Molecular orbital tomography, instead, provides access to the NiTPP macrocycle electronic states and determine the reordering and filling of the LUMOs upon adsorption. The overall energy level alignment of the molecular states, upon adsorption on the metal surface, is shown to be only weakly dependent on the metal ion within the porphyrin, as well as on the symmetry of the crystalline substrate. On the other hand, the molecule-substrate interaction is weaker when CoTPP and NiTPP are deposited on the Ag(110) surface in comparison to Cu substrate, resulting in the filling of only the degenerate LUMO and LUMO+1. The control over the molecule-substrate interaction can also be achieved by functionalization of the organic layer with a proper axial ligand. We show in this work that exposure of the NiTPP/Cu(100) to nitric oxide weakens this interaction: while the charge transfer rate between the Ni porphyrin and the copper surface is reduced, a new electronic state, related to the NO-NiTPP complex, appear in the valence band. Notably, for the first time, we propose here a $\textit{cis}$-dinitrosyl ligation mechanism between the NO molecules and the porphyrin layer, leading to the formation of (NO)$_{2}$-NiTPP complex already at room temperature. 000850285 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0 000850285 8564_ $$uhttps://juser.fz-juelich.de/record/850285/files/Information_55.pdf$$yOpenAccess 000850285 8564_ $$uhttps://juser.fz-juelich.de/record/850285/files/Information_55.gif?subformat=icon$$xicon$$yOpenAccess 000850285 8564_ $$uhttps://juser.fz-juelich.de/record/850285/files/Information_55.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000850285 8564_ $$uhttps://juser.fz-juelich.de/record/850285/files/Information_55.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000850285 8564_ $$uhttps://juser.fz-juelich.de/record/850285/files/Information_55.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000850285 909CO $$ooai:juser.fz-juelich.de:850285$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000850285 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000850285 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000850285 9141_ $$y2018 000850285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162281$$aForschungszentrum Jülich$$b0$$kFZJ 000850285 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0 000850285 920__ $$lyes 000850285 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0 000850285 980__ $$aphd 000850285 980__ $$aVDB 000850285 980__ $$aUNRESTRICTED 000850285 980__ $$abook 000850285 980__ $$aI:(DE-Juel1)PGI-6-20110106 000850285 9801_ $$aFullTexts