001     850300
005     20210129234545.0
024 7 _ |a 10.1016/j.neuroimage.2018.07.034
|2 doi
024 7 _ |a pmid:30016677
|2 pmid
024 7 _ |a WOS:000445165600041
|2 WOS
024 7 _ |a 2128/20978
|2 Handle
024 7 _ |a altmetric:45360780
|2 altmetric
037 _ _ |a FZJ-2018-04342
082 _ _ |a 610
100 1 _ |a Wallroth, R.
|0 P:(DE-Juel1)174174
|b 0
245 _ _ |a Delta activity encodes taste information in the human brain
260 _ _ |a Orlando, Fla.
|c 2018
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1533191005_29218
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The categorization of food via sensing nutrients or toxins is crucial to the survival of any organism. On ingestion, rapid responses within the gustatory system are required to identify the oral stimulus to guide immediate behavior (swallowing or expulsion). The way in which the human brain accomplishes this task has so far remained unclear. Using multivariate analysis of 64-channel scalp EEG recordings obtained from 16 volunteers during tasting salty, sweet, sour, or bitter solutions, we found that activity in the delta-frequency range (1–4 Hz; delta power and phase) has information about taste identity in the human brain, with discriminable response patterns at the single-trial level within 130 ms of tasting. Importantly, the latencies of these response patterns predicted the point in time at which participants indicated detection of a taste by pressing a button. Furthermore, taste pattern discrimination was independent of motor-related activation and encoded taste identity rather than other taste features such as intensity and valence. On comparison with our previous findings from a delayed taste-discrimination task (Crouzet et al., 2015), taste-specific neural representations emerged earlier during this speeded taste-detection task, suggesting a goal-dependent flexibility in gustatory response coding. Together, these findings provide the first evidence of a role of delta activity in taste-information coding in humans. Crucially, these neuronal response patterns can be linked to the speed of simple gustatory perceptual decisions – a vital performance index of nutrient sensing.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
700 1 _ |a Höchenberger, Richard
|0 P:(DE-Juel1)165363
|b 1
700 1 _ |a Ohla, Kathrin
|0 P:(DE-Juel1)165362
|b 2
|e Corresponding author
773 _ _ |a 10.1016/j.neuroimage.2018.07.034
|0 PERI:(DE-600)1471418-8
|p 471 - 479
|t NeuroImage
|v 181
|y 2018
|x 1053-8119
856 4 _ |u https://juser.fz-juelich.de/record/850300/files/1-s2.0-S1053811918306499-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/850300/files/1-s2.0-S1053811918306499-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/850300/files/1-s2.0-S1053811918306499-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/850300/files/1-s2.0-S1053811918306499-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/850300/files/1-s2.0-S1053811918306499-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/850300/files/1-s2.0-S1053811918306499-main.pdf?subformat=pdfa
|y Restricted
856 4 _ |y Published on 2018-07-20. Available in OpenAccess from 2019-07-20.
|u https://juser.fz-juelich.de/record/850300/files/Wallroth_et%20al_Post%20Print_NeuroImage_Delta%20activity.pdf
856 4 _ |y Published on 2018-07-20. Available in OpenAccess from 2019-07-20.
|x pdfa
|u https://juser.fz-juelich.de/record/850300/files/Wallroth_et%20al_Post%20Print_NeuroImage_Delta%20activity.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:850300
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165363
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165362
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21