IntelliAQ

Artificial Intelligence for Air Quality

CoordinatorForschungszentrum Jülich
Grant period2018-10-01 - 2023-09-30
Funding bodyEuropean Union
Call numberERC-2017-ADG
Grant number787576
IdentifierG:(EU-Grant)787576

Note: The IntelliAQ project will develop novel approaches for the analysis and synthesis of global air quality data based on deep neural networks. The foundation of this project is the world’s largest collection of surface air quality measurements, which was recently assembled by the principal investigator and plays a pivotal role in the ongoing first comprehensive Tropospheric Ozone Assessment Report (TOAR). This database will be complemented with data from the world’s leading effort to collect global air pollutant measurements in near realtime and combined with high-resolution geodata, weather information, and satellite retrievals of atmospheric composition in order to characterize individual measurement locations and regional air pollution patterns. State-of-the-art deep learning methods will be applied to this unprecedented dataset in order to 1) fill observation gaps in space and time, 2) provide short-term forecasts of air quality, and 3) assess the quality of air pollutant information from diverse measurements. The combination of diverse data sources is unique, and the project will be the first to apply the full potential of deep neural networks on global air quality data. The achievement of the three IntelliAQ objectives will shift the analysis of global air pollutant observations to a new level and provide a basis for the future development of innovative air quality services with robust scientific underpinning. Due to the heterogeneity of the multivariate data, lack of structure, and generally unknown uncertainty of the input data, the project also poses challenges for existing deep learning methods, and will thus lead to new developments in this field. Direct outcomes of the project will be a substantial improvement of global air quality information including methods to assess the quality of air pollution measurements, and a new data-driven method for forecasting air quality at local scales.
     

Recent Publications

All known publications ...
Download: BibTeX | EndNote XML,  Text | RIS | 

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Dissertation / PhD Thesis
Mapping and Interpolation of Tropospheric Ozone Data with Machine Learning Methods
Bonn : Universitäts- und Landesbibliothek Bonn 167 p. () [10.48565/BONNDOC-179] = Dissertation, Universität Bonn, 2023 OpenAccess  Download fulltext Files BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Using Regionalized Air Quality Model Performance and Bayesian Maximum Entropy data fusion to map global surface ozone concentration
Elementa 11(1), 00025 () [10.1525/elementa.2022.00025] OpenAccess  Download fulltext Files BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;
Graph Machine Learning for Improved Imputation of Missing Tropospheric Ozone Data
Environmental science & technology 57, 18246-18258 () [10.1021/acs.est.3c05104] special issue: "Data Science for Advancing Environmental Science, Engineering and Technology" OpenAccess  Download fulltext Files BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;
O3ResNet: A Deep Learning–Based Forecast System to Predict Local Ground-Level Daily Maximum 8-Hour Average Ozone in Rural and Suburban Environments
Artificial Intelligence for the Earth Systems 2(3), 1 - 16 () [10.1175/AIES-D-22-0085.1] OpenAccess  Download fulltext Files BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;  ;  ;
Temperature forecasting by deep learning methods
Geoscientific model development 15(23), 8931 - 8956 () [10.5194/gmd-15-8931-2022] OpenAccess  Download fulltext Files  Download fulltextFulltext by OpenAccess repository BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Conference Presentation (Invited)  ;  ;  ;  ;  ;  ;  ;
TOAR-II Overview and Database
Spring 2022 Meetings of the Task Force on Hemispheric Transport of Air Pollution, virtualvirtual, virtual, 17 May 2022 - 25 May 20222022-05-172022-05-25 OpenAccess  Download fulltext Files  Download fulltextFulltext by OpenAccess repository BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Conference Presentation (Invited)  ;  ;  ;  ;  ;  ;
TOAR-II data portal for global measurements of ozone and its precursors
CEOS Atmospheric Composition Virtual Constellation AC-VC-18, virtualvirtual, Belgium, 14 Mar 2022 - 18 Mar 20222022-03-142022-03-18 OpenAccess  Download fulltext Files  Download fulltextFulltext by OpenAccess repository BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;
Representing chemical history in ozone time-series predictions – a model experiment study building on the MLAir (v1.5) deep learning framework
Geoscientific model development 15(23), 8913 - 8930 () [10.5194/gmd-15-8913-2022] special issue: "Benchmark datasets and machine learning algorithms for Earth system science data" OpenAccess  Download fulltext Files  Download fulltextFulltext by OpenAccess repository BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Poster (After Call)  ;  ;  ;  ;
Geodata enrichment for air quality
Living Planet Symposium 2022, LPS2022, BonnBonn, Germany, 23 May 2022 - 27 May 20222022-05-232022-05-27 OpenAccess  Download fulltext Files  Download fulltextFulltext by OpenAccess repository BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;  ;  ;
Editors’ Note: Special Issue on Canonical Workflow Frameworks for Research
Data Intelligence 4(2), 149 - 154 () [10.1162/dint_e_00122] OpenAccess  Download fulltext Files  Download fulltextFulltext by OpenAccess repository BibTeX | EndNote: XML, Text | RIS

All known publications ...
Download: BibTeX | EndNote XML,  Text | RIS | 


 Datensatz erzeugt am 2018-07-20, letzte Änderung am 2023-02-07



Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)