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We compute the leading, strong-interaction contribution to the anomalous magnetic moment of the

electron, muon, and tau using lattice quantum chromodynamics (QCD) simulations. Calculations include the

effects of u, d, s, and c quarks and are performed directly at the physical values of the quark masses and in

volumes of linear extent larger than 6 fm. All connected and disconnected Wick contractions are calculated.

Continuum limits are carried out using six lattice spacings. We obtain aLO-HVPe ¼ 189.3ð2.6Þð5.6Þ × 10−14,

aLO-HVPμ ¼ 711.1ð7.5Þð17.4Þ × 10−10 and aLO-HVPτ ¼ 341.0ð0.8Þð3.2Þ × 10−8, where the first error is

statistical and the second is systematic.

DOI: 10.1103/PhysRevLett.121.022002

Introduction.—Ever since the discovery of the electron’s

spin [1,2], the magnetic moments of leptons have accom-

panied the development of quantummechanics and quantum

field theory. This is particularly true of the small, “anoma-

lous,” quantum corrections to these moments, al, where l
denotes either the electron (e), themuon (μ) or the tau (τ) (see,

e.g., Ref. [3] for an introduction). Today, ae is one of themost

precisely measured [4] and computed [5,6] quantities in

nature, with a total uncertainty below 1 ppb. Theory and

experiment agree and the measurement can be used to

make the most precise determination of the fine-structure

constant α [6].

In the case of the muon, the precision of the measurement

[7] and of the standardmodel (SM) prediction (e.g., Ref. [8])

are roughlymatched at around 0.5 ppm.However, theory and

experiment disagree bymore than 3 standard deviations. This

is particularly enticing, because it could be a sign of new,

fundamental physics. The anomalous magnetic moment of

the muon is genericallymuchmore sensitive to new, massive

degrees of freedom than that of the electron. This is because,

in many extensions of the SM, the contributions of new

particles are proportional to the leptonmass squared,which is
roughly 4 × 104 times larger for the muon. Moreover, a new

experiment is beginning to take data at Fermilab [9], with the
goal of reducing errors by a factor of four, and another one is

planned at J-PARC, with similar objectives [10].
The same argument shouldmake aτ evenmore interesting

for new physics searches: the τ mass is close to 17 times that

of themuon.However, its very short lifetime, of order10−13s,
has meant that no direct measurement of aτ has yet been
made, though a concrete proposal for doing so [11] is being

implemented [12].
Theoretically, the leading source of uncertainty in the SM

prediction of aμ is the leading order (LO) hadronic vacuum

polarization (HVP) contribution, aLO-HVPμ , which is respon-

sible for over 79%of the total error [8]. This contribution also
dominates theuncertainty inaτ [13] and forae, has a total size
of around 6.5 times the experimental error [14]. Today this
contribution is determined most precisely using dispersion
relations and the cross section of eþe− to hadrons and/or the
rate of hadronic τ decays [3,8,15–20]. However, since the
pioneering work of Ref. [21], lattice QCD calculations of

aLO-HVPμ [22–39] have made significant progress and provide

a completely independent cross-check that will become
competitive in the coming years.

Here we present lattice QCD calculations of the

LO-HVP contribution to the anomalous magnetic moments
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of all three leptons. The calculations include all contributions

from u, d, s, and c quarks, directly at the physical values

of their masses, in their quark-connected and quark-

disconnected configurations. Contributions from third gen-

eration quarks can easily be estimated and are found to be

much smaller than our statistical errors, even for the τ that is

most sensitive to them (see, e.g., Ref. [40] for a calculation of

the b contribution to aLO-HVPμ ). Some previous lattice calcu-

lations of aLO-HVP
l

, l ¼ e, μ [25,31], and of aLO-HVP
l

, l ¼ e,

μ, τ [41], included all of these contributions, but involved

difficult extrapolations to the physical value of the average

u-d quarkmass and only estimated the disconnected parts. In

the present Letter, we work directly at the physical point and

compute disconnected contributions directly. Moreover, we

implement a description of the lattice results [42,43] that

solves the small virtuality issue [44] with finite-volume (FV)

artifacts that are exponentially suppressed in lattice size.

A unified treatment of the HVP contribution to the three

lepton anomalous magnetic moments provides important

cross-checks that validate the methods used. As the typical

virtualities probed by these moments are around m2

l
=4, the

vast difference in the mass of the leptons means that a large

range of relevant scales are checked. In particular, agree-

ment between our results and phenomenology in the

electron case validates our understanding of small virtual-

ities, and of larger virtualities in the τ case. In addition, the

inclusion of all flavors up to the charm allows a controlled

matching onto perturbation theory. Thus, all energy scales

from zero to infinity are controlled in our calculation.

Methodology.—We consider the zero three-momentum

two-point function of the quark electromagnetic current in

Euclidean time t:

CμνðtÞ ¼
1

e2

Z

d3xhjμðxÞjνð0Þi; ð1Þ

with e the positron charge, x ¼ ðt; x⃗Þ and jμ=e ¼
2

3
ūγμu − 1

3
d̄γμd − 1

3
s̄γμsþ 2

3
c̄γμc. We work in the isospin

limit, mu ¼ md. Because Cμν’s flavor components are

calculated separately and have different statistical and

systematic uncertainties, it is useful to treat them separately.

Physically, an isospin separation is useful. Thus,

CμνðtÞ ¼ Cud
μνðtÞ þ Cs

μνðtÞ þ Cc
μνðtÞ þ Cdisc

μν ðtÞ
¼ CI¼1

μν ðtÞ þ CI¼0
μν ðtÞ; ð2Þ

where in the top equality the first three terms correspond to

the quark-connected contractions of the light (u and d
combined), strange and charm quarks, and the fourth to the

quark-disconnected contractions of all four flavors. In the

second equality, the separation is made between isospin

I ¼ 1 and I ¼ 0 contributions, given by CI¼1
μν ¼ 9

10
Cud
μν

and CI¼0
μν ¼ 1

10
Cud
μν þ Cs

μν þ Cc
μν þ Cdisc

μν .

It is straightforward to obtain the corresponding LO-HVP

contributions to the anomalousmagneticmoment of leptonl

from these correlation functions [21,45,46]:

aLO-HVP
l;f ¼

�

α

π

�

2
Z

∞

0

dQ2

m2

l

ω

�

Q2

m2

l

�

Π̂
fðQ2Þ; ð3Þ

with ωðrÞ ¼ π2½rþ 2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðrþ 4Þ
p

�2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðrþ 4Þ
p

, α ¼
e2=ð4πÞ and where the scalar polarization function renor-

malized in the Thomson limit is given by (see also Ref. [42])

Π̂
fðQ2Þ≡Π

fðQ2Þ−Π
fð0Þ

¼1

3

X

3

i¼1

Z

∞

0

dt

�

t2−
4

Q2
sin2

�

Qt

2

��

ReC
f
iiðtÞ: ð4Þ

In Eqs. (3) and (4), the superscript f can stand for

ud; s; c; disc; I ¼ 1; I ¼ 0, and ␣ where the “␣” indicates

that this equation also applies to the full LO-HVP contribu-

tion. Equation (4) implicitly includes the subtraction of the

polarization tensor ΠμνðQ ¼ 0Þ, which was shown in

Ref. [28] to be critical for reducing FV effects and, through

the factor t2, the subtraction of the polarization scalar Πfð0Þ.
On a T × L3 lattice with spacing a, the integral over t in

Eq. (4) is replaced bya sum, in increments ofa, that runs up to

T=2, once the correlator C
f
iiðtÞ has been averaged with

C
f
iiðT − tÞ.Moreover, the integral overQ inEq. (3) should, in

principle, be replaced by a sum from 0 to π=a in steps of

2π=T. Here we keep the integral, but cut it off at a value

Q ¼ Qmax, chosen much smaller than π=a, so as to keep

discretization errors under control, but above which pertur-

bation theory can be applied. Then we decompose the

anomalousmagneticmoments of the leptons into three terms:

aLO-HVP
l;f ¼ aLO-HVP

l;f ðQ ≤ QmaxÞ þ γlðQmaxÞΠ̂fðQ2
maxÞ

þ Δ
pertaLO-HVP

l;f ðQ > QmaxÞ; ð5Þ

where the low momentum contribution, aLO-HVP
l;f ðQ≤QmaxÞ,

is obtained from the lattice as described above, and where

the last term is the high-momentum, contribution renormal-

ized at Qmax and computed in perturbation theory [47].

The second term in Eq. (5) is required to shift the renorm-

alization point fromQmax toQ ¼ 0. It is obtained with lattice

results forC
f
iiðtÞ, throughEq. (4)withQ ¼ Qmax. γlðQmaxÞ is

a known kinematical factor [47]. In obtaining Eq. (5), it is

assumed that ΔpertaLO-HVP
l;f ðQ > QmaxÞ is equal to the value

that it would have nonperturbatively. We check this by

studying the dependence of our results on the choice ofQmax.

The replacement of the FV sum over Q by the corre-

sponding integral is our choice of interpolation for the HVP

function Π̂ðQ2Þ. It constitutes an alternative to, e.g., the

Padé approximation proposed in Ref. [44], the Marichev

interpolation advocated in Ref. [48], or the finite-energy

sum rule approach of Ref. [49]. The integrand in Eq. (3) has

no singularities in the region of integration. Therefore, an

application of Poisson’s summation theorem guarantees

that the corrections entailed in replacing the sum by an
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integral over Q are exponentially small in T. These

corrections will be accounted for in our estimate of FV

uncertainties.

Lattice details.—We employ a tree-level improved

Symanzik gauge action [50] and a fermion action for Nf ¼
2þ 1þ 1 flavors of stout-smeared [51], rooted, staggered

quarks. We have generated 15 ensembles at six values of

the bare coupling, β, corresponding to lattice spacings

ranging from 0.064 to 0.134 fm. The average up and down

quark mass and the strange quark mass are tuned to around

the physical mass point defined using the Goldstone pion

and kaon masses. The charm quark mass is fixed in units of

the strange mass to mc=ms ¼ 11.85 [52]. The spatial

dimensions of our lattices are in the range 6.1–6.6 fm

and the temporal ones in the interval 8.6–11.3 fm. The

lattice spacing is fixed with the pion leptonic decay

constant, fπ . At each value of β, between 450 and 3500

configurations, separated by 10 unit length rational hybrid

Monte Carlo (RHMC) [53] trajectories, are used. Details

are given in Ref. [47] and more information about the

simulations can be found in Ref. [54].

For the electromagnetic current correlator, we use the

conserved lattice current at the source and sink so that no

renormalization is necessary. We calculate the connected

contributions to the correlators using point sources. We use

the all-mode-averaging (AMA) technique of Ref. [55] and

768 random source positions on each configuration for the

light quarks, 64 sources for the strange and 4 for the charm.

To compute the quark-disconnected contributions, we

apply AMA again, and exploit the approximate SU(3)

flavor symmetry on around 6000 stochastic sources

[30,56]. These are random, four-volume sources with

which we compute the zero-momentum, time propagators,

correcting for bias. For the disconnected contribution of the

charm we apply a hopping parameter expansion.

Analysis.—Even with our high statistics, the signal

deteriorates quickly with increasing distance in our light

and disconnected correlators. Thus, in implementing

Eqs. (3) and (4), we introduce cuts, tc, in time beyond

which we replace the correlator by the average of an upper

and a lower bound [35,57]. tc is chosen such that the upper
and lower bounds agree well within statistical errors and

where these errors are not too large. The upshot is that our

result for the light contribution to aLO-HVP
l

is obtained by

summing the integrand in Eq. (4) with Cud
ii ðtÞ given by our

lattice data up to tc and performing the rest of the sum from

t > tc to T=2 with Cud
ii ðtÞ replaced by the bound average.

The results of this procedure for tc in the range of ð3.000�
0.134Þ fm are averaged to account for possible statistical

fluctuations in the correlator at a given tc. The disconnected

contribution to aLO-HVP
l

is obtained in an identical fashion,

but with tc in the range ð2.600� 0.134Þ fm.

We limit the integral over Q in Eq. (3) to Qmax, and use

perturbation theory to obtain the complement. We consider

Q2
max ¼ 1; 2;…; 5 GeV2. In what follows, quantities with

the subscript “lat” correspond to lattice results obtained in a

given simulation. Their dependence on lattice spacing and

quark masses will be left implicit. To extrapolate our results

aLO-HVP
l;f;lat ðQ ≤ QmaxÞ to the continuum limit and to inter-

polate them to the physical mass point, we fit them to a

function which depends on the Goldstone pion and kaon

masses squared, on the ηc mass and on the lattice spacing

squared [59]. Since the simulations are performed close to

the physical mass point, a constant or linear dependence in

the mass parameters is always sufficient. Moreover, for all

flavor contributions, good fit qualities can be achieved with

a linear a2 dependence for all three leptons and all values of
Qmax considered here. Because taste violations play an

important role in the continuum extrapolation of aLO-HVP
l;ud ,

we have also tried correcting for these effects using one-

loop staggered chiral perturbation theory before performing

a continuum extrapolation [34]. While the continuum

extrapolation is significantly milder, the continuum limit

results obtained are consistent with the ones presented here.

Our continuum extrapolations are discussed in detail and

examples are shown in Ref. [47]. Here we emphasize that

with simulations at six lattice spacings down to 0.064 fm,

we have full control over the continuum extrapolations.

This analysis yields the continuum extrapolated flavor

quantities, aLO-HVP
l;f ðQ ≤ QmaxÞ, for the five values of Qmax

considered. For each value ofQmax, we sum the appropriate

flavor quantities, to get the corresponding I ¼ 1, I ¼ 0, and

total, low-Q contributions to the lepton anomalous mag-

netic moments. The results for these and the individual

flavor contributions are given in Ref. [47], with statistical

and systematic errors obtained as described below. To these

contributions we add the corresponding complements given

in Eq. (5). These complements require the computation of

Π̂
fðQ2

maxÞ. This is done using Eq. (4) and requires a

continuum limit and physical mass point interpolation very

similar to that performed for aLO-HVP
l;f;lat ðQ ≤ QmaxÞ [47].

The perturbative contributions, ΔpertaLO-HVP
l;f ðQ > QmaxÞ,

are computed from results for ΠfðQ2Þ, with terms up to

Oðα4sÞ, obtained using the code rhad [69], as explained in

Ref. [47]. These corrections are below our statistical errors

for the e and μ, which have very little sensitivity to large Q,

but are significant for the τ. In Ref. [47] we study the Qmax

dependence of our results for aLO-HVP
l;f . The fact that they are

independent of Qmax ≥
ffiffiffi

2
p

GeV within errors, in particular

for l ¼ τ, indicates that our continuum-limit, lattice results

are consistent with five-loop perturbation theory for

momenta, Q, above that value.

Systematic errors and results.—The procedure described

above yields aLO-HVP
l;f for all f and for all three leptons. In

our physical fits, the errors associated with the small

interpolations in mass are negligible. Those associated

with the continuum extrapolations are not. To estimate

them, we impose four cuts on the lattice spacing: no cut,

and a ≤ 0.118, 0.111, 0.095 fm. This number is reduced to
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three in the disconnected case forwhichwe have no results at

a ¼ 0.064 fm. The systematic error associated with the

matching to perturbation theory is determined from the

resultswithQ2
max ¼ 2;…; 5 GeV2, covering the range safely

accessible to our lattice calculations and to perturbation

theory. The one associated with the time cut is determined by

considering tc ranges shifted by −0.134 fm compared to

those given above. Over the total range of tc considered, the
two-pion bounds change by a factor close to 3. The final

central value is the unweighted average of all results. Each

systematic error component is chosen to cover all of the

central values resulting from the variation, over the ranges

described above, of the variable associated with that com-

ponent. Furthermore, we add a 0.8% systematic error to our

results for aLO-HVP
l;f ðQ ≤ QmaxÞ due to the uncertainty in our

determination of the lattice spacing [47]. The statistical error

is the jackknife error of the central value over jackknife

sampleswith bins of length 10 configurations. The results for

the individual flavor contributions to the magnetic moments

of all three leptons are given in Ref. [47].

In the absence of a systematic study with simulations in a

variety of volumes, onlymodel estimates of FVeffects can be

made. As argued in Refs. [70,71], for large volumes those

effects will be governed by pion contributions that can be

computed in chiral perturbation theory (χPT) [70]. Since the

I ¼ 0 channel is dominated by three-pion exchange, the FV

effects are expected to be smaller than those of the I ¼ 1

contribution, which are already small. Thus we consider

only the latter. Our computation of these effects is summa-

rized inRef. [47] and the appropriate corrections are added to

our I ¼ 1 and total results. They are 4.6ð4.6Þ × 10−14 for

the e and 13.5ð13.5Þ × 10−10 for the μ with negligible

Qmax dependence in the range of interest. For the τ

they range from 9.4ð9.4Þ × 10−9 to 1.6ð1.6Þ × 10−8 for

Qmax ¼ 1 ÷
ffiffiffi

5
p

GeV. We associate with these corrections

a 100% uncertainty included in our error budget.

Compared to phenomenological determinations of

aLO-HVPμ [8,19,20], our md ¼ mu calculation without

QED is missing isospin-breaking (IB) effects. These are

detailed in Ref. [47]. Here we note that the corrections to be

added are ð1.7� 1.6Þ × 10−14 for the e, ð7.8� 5.1Þ ×
10−10 for the μ, and ð3.4� 1.1Þ × 10−8 for the τ.

We quote our final results for aLO-HVP
l

for all three

leptons in Table I. Combining all errors in quadrature, we

obtain aLO-HVPe with an uncertainty of 3.3%, aLO-HVPμ of

2.7% and aLO-HVPτ of 1.0%. Not surprisingly, the relative

error increases with the sensitivity of the anomalous

moment to long-distance physics.

Discussion.—It is interesting to compare these results

with those in the literature. There are only two lattice QCD

determinations of the LO-HVP contribution to the muon

anomalous moment which include the contributions of

quarks up to the charm [25,34]. Compared to those, our

calculation is the only one in which the continuum

extrapolation is performed directly at the physical mass

point and which includes a reliable determination of the

quark-disconnected contribution. There exist also many

precise phenomenological determinations of aLO-HVPμ , as

discussed in the Introduction. Here we consider three recent

ones [8,19,20].

We plot all of these results in Fig. 1, together with

ours. Also shown on this plot is the value that aLO-HVPμ would

have to have to explain the experimental measurement

TABLE I. LO-HVP contribution to the anomalous magnetic moments of the e, μ, and τ leptons. The first two lines give our results for
the I ¼ 1 and I ¼ 0 contributions. The I ¼ 1 results include the FV corrections, which are negligible in the I ¼ 0 case. The last line

displays our results for the total LO-HVP contribution. In addition to the terms included in the I ¼ 1 and I ¼ 0 components, this total

also accounts for QED and md ≠ mu corrections. The first error on all results is statistical, the second is associated with the continuum

extrapolation, the third with our bounding procedure, the fourth with the matching to perturbation theory, the fifth with the lattice

spacing uncertainty and, where applicable, the sixth with the FV correction and the seventh with the IB correction.

l ¼ e (units of 10−14) l ¼ μ (units of 10−10) l ¼ τ (units of 10−8)

aLO-HVP
l;I¼1

156.9(2.4)(2.1)(0.0)(0.0)(1.2)(4.6) 582.9(6.7)(7.2)(0.1)(0.0)(4.5)(13.5) 253.2(0.7)(1.4)(0.0)(0.1)(1.2)(1.8)

aLO-HVP
l;I¼0

30.7(1.2)(1.0)(0.1)(0.0)(0.2) 120.5(3.4)(3.5)(0.2)(0.0)(1.0) 84.4(0.4)(0.7)(0.0)(1.1)(3.4)

aLO-HVP
l

189.3(2.6)(2.3)(0.1)(0.0)(1.5)(4.6)(1.6) 711.1(7.5)(8.0)(0.2)(0.0)(5.5)(13.5)(5.1) 341.0(0.8)(1.6)(0.0)(1.1)(1.5)(1.8)(1.1)

 640  660  680  700  720  740

This work

HPQCD 16

ETM 14

KNT 18

DHMZ 17

Jegerlehner 17

No new physics

a
µ

LO-HVP
 . 10

10

LQCD (Nf =2+1+1)
Phenomenology

FIG. 1. Comparison of our result for aLO-HVPμ with the only

other two Nf ¼ 2þ 1þ 1 lattice QCD calculations [25,34] and

with recent ones obtained from phenomenology [8,19,20]. For

the lattice results, the first error is statistical and the second is the

total error, including systematics. The shaded region is the value

that aLO-HVPμ would have to have to explain the experimental

measurement of aμ, assuming no new physics.
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of aμ [7], assuming that all other SM contributions are

unchanged, i.e., assuming no new physics (NP). Using the

SM contributions summarized in Ref. [8], we find

aLO-HVPμ;noNP ¼ ð720.0� 6.8Þ × 10−10. The errors on the lattice

results, which are in the range of 2.0% to 4.1% are

substantially larger than those of the phenomenological

approach. Our result for aLO-HVPμ is larger than those of

the other lattice calculations and in slight tensionwith the one

from HPQCD [34] which is 1.9σ away. A more detailed

flavor-by-flavor comparison is given in Ref. [47]. However,

our result is consistent with those from phenomenology

within about 1 standard deviation, as well as with aLO-HVPμ;noNP .

Thus, one will have to wait for the next generation of lattice

QCD calculations to confirm or infirm the larger than 3σ

deviation between the measurement of aμ and the prediction

of the SM based on phenomenology.

Regarding aLO-HVPe , there are two other lattice calculations

[34,41] and only one concerning aLO-HVPτ [41]. The results

in Ref. [41] are aLO-HVPe ¼ 1.782ð64Þð86Þ × 10−12 and

aLO-HVPτ ¼ 3.41ð8Þð6Þ × 10−6 and in Ref. [34], aLO-HVPe ¼
1.779ð39Þ × 10−12. From the point of view of phenomenol-

ogy, a dispersive analysis similar to the one implemented for

the muon gives aLO-HVPe ¼ 1.846ð12Þ × 10−12 [14] and

aLO-HVPτ ¼ 3.38ð4Þ × 10−6 [13]. Comparing these results

to ours in Table I, we find the following. The result of

Ref. [34] for aLO-HVPe displays a tension with ours which is

slightly smaller than the one for aLO-HVPμ . On the other hand,

our results are fully compatible with the phenomenological

ones, indicating that we control the physics of the HVP over

full range of Q2. In addition, our result for aLO-HVPe has an

error which is about half that of the lattice result of Ref. [41]

and for aLO-HVPτ , it is approximately 3 times more precise. In

fact, our result for the latter is more precise than the

phenomenological one.
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Note added.—Recently, a work reporting on anNf ¼ 2þ 1

lattice QCD calculation of aLO-HVPμ appeared [72]. That

calculation includes a lattice computation of many isospin

breaking effects. Its result for aLO-HVPμ is in excellent

agreement with ours.
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