000850618 001__ 850618
000850618 005__ 20210129234555.0
000850618 0247_ $$2doi$$a10.1038/s41563-018-0086-5
000850618 0247_ $$2ISSN$$a1476-1122
000850618 0247_ $$2ISSN$$a1476-4660
000850618 0247_ $$2pmid$$apmid:29795218
000850618 0247_ $$2WOS$$aWOS:000432928300006
000850618 0247_ $$2altmetric$$aaltmetric:42438208
000850618 037__ $$aFZJ-2018-04426
000850618 082__ $$a610
000850618 1001_ $$0P:(DE-Juel1)130643$$aFreimuth, Frank$$b0$$eCorresponding author$$ufzj
000850618 245__ $$aTailor-made currents
000850618 260__ $$aBasingstoke$$bNature Publishing Group$$c2018
000850618 3367_ $$2DRIVER$$aarticle
000850618 3367_ $$2DataCite$$aOutput Types/Journal article
000850618 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1532930599_15407
000850618 3367_ $$2BibTeX$$aARTICLE
000850618 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850618 3367_ $$00$$2EndNote$$aJournal Article
000850618 520__ $$aThe magnetization direction of nanosize magnets is used nowadays to store information compactly in hard disks. The magnetization points either up or down, which corresponds to the values 0 and 1 of the bit. In order to reduce the size of magnetic bits further and to increase the information density in magnetic storage devices, the mechanism used to write the bits by switching the magnetization up or down needs to be efficient and reliable at smaller length scales. The spin-transfer torque is such a scalable mechanism: when a spin current traverses a magnet, the spins exert a torque on the magnetization if they are not aligned with it. It can therefore be used to switch the magnetization in magnetic bilayers composed of a normal metal layer and a magnetic layer (Fig. 1a). Spin currents flowing from the normal metal into the magnet can be generated through electric currents applied parallel to the bilayer interface1,2. In magnetic bilayers, however, such current-induced torques on the magnetization are not possible without spin–orbit interaction and are therefore called spin–orbit torques. Now, writing in Nature Materials, Baek and colleagues3 demonstrate an unexpected spin polarization of the spin currents in trilayers composed of two magnets sandwiching a normal metal layer (Fig. 1b) and show that the bottom magnet can be used for the switching of the top magnet without an additional external magnetic field.
000850618 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000850618 588__ $$aDataset connected to CrossRef
000850618 773__ $$0PERI:(DE-600)2088679-2$$a10.1038/s41563-018-0086-5$$gVol. 17, no. 6, p. 478 - 479$$n6$$p478 - 479$$tNature materials$$v17$$x1476-4660$$y2018
000850618 8564_ $$uhttps://juser.fz-juelich.de/record/850618/files/s41563-018-0086-5.pdf$$yRestricted
000850618 8564_ $$uhttps://juser.fz-juelich.de/record/850618/files/s41563-018-0086-5.gif?subformat=icon$$xicon$$yRestricted
000850618 8564_ $$uhttps://juser.fz-juelich.de/record/850618/files/s41563-018-0086-5.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000850618 8564_ $$uhttps://juser.fz-juelich.de/record/850618/files/s41563-018-0086-5.jpg?subformat=icon-180$$xicon-180$$yRestricted
000850618 8564_ $$uhttps://juser.fz-juelich.de/record/850618/files/s41563-018-0086-5.jpg?subformat=icon-640$$xicon-640$$yRestricted
000850618 8564_ $$uhttps://juser.fz-juelich.de/record/850618/files/s41563-018-0086-5.pdf?subformat=pdfa$$xpdfa$$yRestricted
000850618 909CO $$ooai:juser.fz-juelich.de:850618$$pVDB
000850618 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130643$$aForschungszentrum Jülich$$b0$$kFZJ
000850618 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000850618 9141_ $$y2018
000850618 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000850618 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850618 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT MATER : 2015
000850618 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000850618 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000850618 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000850618 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000850618 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850618 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850618 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850618 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850618 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000850618 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000850618 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bNAT MATER : 2015
000850618 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000850618 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000850618 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000850618 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000850618 980__ $$ajournal
000850618 980__ $$aVDB
000850618 980__ $$aI:(DE-Juel1)IAS-1-20090406
000850618 980__ $$aI:(DE-Juel1)PGI-1-20110106
000850618 980__ $$aI:(DE-82)080009_20140620
000850618 980__ $$aI:(DE-82)080012_20140620
000850618 980__ $$aUNRESTRICTED