001     850618
005     20210129234555.0
024 7 _ |a 10.1038/s41563-018-0086-5
|2 doi
024 7 _ |a 1476-1122
|2 ISSN
024 7 _ |a 1476-4660
|2 ISSN
024 7 _ |a pmid:29795218
|2 pmid
024 7 _ |a WOS:000432928300006
|2 WOS
024 7 _ |a altmetric:42438208
|2 altmetric
037 _ _ |a FZJ-2018-04426
082 _ _ |a 610
100 1 _ |a Freimuth, Frank
|0 P:(DE-Juel1)130643
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Tailor-made currents
260 _ _ |a Basingstoke
|c 2018
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1532930599_15407
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The magnetization direction of nanosize magnets is used nowadays to store information compactly in hard disks. The magnetization points either up or down, which corresponds to the values 0 and 1 of the bit. In order to reduce the size of magnetic bits further and to increase the information density in magnetic storage devices, the mechanism used to write the bits by switching the magnetization up or down needs to be efficient and reliable at smaller length scales. The spin-transfer torque is such a scalable mechanism: when a spin current traverses a magnet, the spins exert a torque on the magnetization if they are not aligned with it. It can therefore be used to switch the magnetization in magnetic bilayers composed of a normal metal layer and a magnetic layer (Fig. 1a). Spin currents flowing from the normal metal into the magnet can be generated through electric currents applied parallel to the bilayer interface1,2. In magnetic bilayers, however, such current-induced torques on the magnetization are not possible without spin–orbit interaction and are therefore called spin–orbit torques. Now, writing in Nature Materials, Baek and colleagues3 demonstrate an unexpected spin polarization of the spin currents in trilayers composed of two magnets sandwiching a normal metal layer (Fig. 1b) and show that the bottom magnet can be used for the switching of the top magnet without an additional external magnetic field.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
773 _ _ |a 10.1038/s41563-018-0086-5
|g Vol. 17, no. 6, p. 478 - 479
|0 PERI:(DE-600)2088679-2
|n 6
|p 478 - 479
|t Nature materials
|v 17
|y 2018
|x 1476-4660
856 4 _ |u https://juser.fz-juelich.de/record/850618/files/s41563-018-0086-5.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/850618/files/s41563-018-0086-5.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/850618/files/s41563-018-0086-5.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/850618/files/s41563-018-0086-5.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/850618/files/s41563-018-0086-5.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/850618/files/s41563-018-0086-5.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:850618
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130643
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT MATER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b NAT MATER : 2015
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21