001     850749
005     20220930130154.0
024 7 _ |a 10.1029/2018GL078658
|2 doi
024 7 _ |a 0094-8276
|2 ISSN
024 7 _ |a 1944-8007
|2 ISSN
024 7 _ |a 2128/19886
|2 Handle
024 7 _ |a WOS:000443129500038
|2 WOS
037 _ _ |a FZJ-2018-04527
082 _ _ |a 550
100 1 _ |a von Hebel, Christian
|0 P:(DE-Juel1)145932
|b 0
|e Corresponding author
245 _ _ |a Understanding soil and plant interaction by combining ground-based quantitative electromagnetic induction and airborne hyperspectral data
260 _ _ |a Hoboken, NJ
|c 2018
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1562745558_16032
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For the first time, we combine depth-specific soil information obtained from the quantitative inversion of ground-based multi-coil electromagnetic induction (EMI) data with the airborne hyperspectral vegetation mapping of 1x1 m pixels including sun-induced fluorescence (F) to understand how subsurface structures drive above-surface plant performance. Hyperspectral data were processed to quantitative F and selected biophysical canopy maps, which are proxies for actual photosynthetic rates. These maps showed within-field spatial patterns, which were attributed to paleo-river channels buried at around 1 m depth. The soil structures at specific depths were identified by quantitative EMI data inversions and confirmed by soil samples. Whereas the upper ploughing layer showed minor correlation to the plant data, the deeper subsoil carrying vital plant resources correlated substantially. Linking depth-specific soil information with plant performance data may greatly improve our understanding and the modeling of soil-vegetation-atmosphere exchange processes.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
536 _ _ |a Better predictions with environmental simulation models: optimally integrating new data sources (jicg41_20100501)
|0 G:(DE-Juel1)jicg41_20100501
|c jicg41_20100501
|f Better predictions with environmental simulation models: optimally integrating new data sources
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Matveeva, Maria
|0 P:(DE-Juel1)130098
|b 1
|u fzj
700 1 _ |a Verweij, Elizabeth
|0 P:(DE-Juel1)169328
|b 2
700 1 _ |a Rademske, Patrick
|0 P:(DE-Juel1)162306
|b 3
|u fzj
700 1 _ |a Kaufmann, Manuela Sarah
|0 P:(DE-Juel1)168553
|b 4
700 1 _ |a Brogi, Cosimo
|0 P:(DE-Juel1)168418
|b 5
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 6
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 7
|u fzj
700 1 _ |a van der Kruk, Jan
|0 P:(DE-Juel1)129561
|b 8
|u fzj
773 _ _ |a 10.1029/2018GL078658
|0 PERI:(DE-600)2021599-X
|n 15
|p 7571-7579
|t Geophysical research letters
|v 45
|y 2018
|x 0094-8276
856 4 _ |u https://juser.fz-juelich.de/record/850749/files/F7425861.pdf
856 4 _ |u https://juser.fz-juelich.de/record/850749/files/Hebel_et_al-2018-Geophysical_Research_Letters-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/850749/files/2018GL078658_AcceptedArticle.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/850749/files/Hebel_et_al-2018-Geophysical_Research_Letters-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/850749/files/2018GL078658_AcceptedArticle.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/850749/files/F7425861.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:850749
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145932
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130098
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162306
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)168553
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)168418
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129388
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129561
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOPHYS RES LETT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21