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Abstract 

For the first time, we combine depth-specific soil information obtained from the 
quantitative inversion of ground-based multi-coil electromagnetic induction (EMI) data with 
the airborne hyperspectral vegetation mapping of 1x1 m pixels including sun-induced 
fluorescence (F) to understand how subsurface structures drive above-surface plant 
performance. Hyperspectral data were processed to quantitative F and selected biophysical 
canopy maps, which are proxies for actual photosynthetic rates. These maps showed within-
field spatial patterns, which were attributed to paleo-river channels buried at around 1 m 
depth.  The soil structures at specific depths were identified by quantitative EMI data 
inversions and confirmed by soil samples. Whereas the upper ploughing layer showed minor 
correlation to the plant data, the deeper subsoil carrying vital plant resources correlated 
substantially. Linking depth-specific soil information with plant performance data may 
greatly improve our understanding and the modeling of soil-vegetation-atmosphere exchange 
processes. 

 

 

Plain Language Summary 

Plants interact with soil. This is intuitive although we know little about the subsurface 
structure because we cannot see it.  At first glance, all soil may look the same, yet, healthy 
plants can survive beside withered ones. We investigate the soil-plant interaction in an 
agricultural field situated in an area characterized by ancient (paleo-) river channels. These 
channels formed in sandy-gravelly material due to melting water after last glaciation, were 
then filled up with fine aeolien sediments, overlaid with soils up to 1 m thick, and are no 
longer visible at the surface. However, crops grow in meandering/braiding patterns that can 
be seen on satellite images, for example. To explain this, the subsurface structural geometry 
must be known. We combine ground-based electromagnetic induction data inversion results 
with airborne hyperspectral measurements to reveal the soil depths driving plant performance 
(photosynthetic activity and growth). Contrary to expectations, the deeper subsoil and not the 
ploughing layer controls plant performance at the investigated site. Plants above the buried 
paleo-river channels find nutrients and water, whereas the surrounding plants in gravelly soil 
suffer, especially during drought. These results improve our understanding of soil-plant 
interaction, which may improve soil-vegetation-atmosphere exchange process modeling and 
harvest predictability.  
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1 Introduction 

Photosynthetic carbon fixation and evaporation are major elements in the global 
carbon and water cycles. Great uncertainties still exist in determining water stored and 
supplied by the soil and in the efficiency with which plants access and use these soil water 
resources. Global soil moisture measurement platforms such as SMOS (soil moisture and 
ocean salinity, ESA) and SMAP (soil moisture active and passive, NASA) have greatly 
advanced our understanding in the spatio-temporal soil water dynamics. However, these 
satellite missions only observe soil moisture distributions of the upper ~ 5 cm depth (Collow 
et al., 2012; Velpuri et al., 2016). In contrast, plants and crops generally develop deep and 
massive root systems especially in their later growth stage, thus accessing deep soil water to 
maintain photosynthesis and avoid drought when the surface soils have become dry. Winter 
wheat roots, for example, penetrate the soil in their five months vegetation period at depths of 
up to 2 m (Thorup-Kristensen et al., 2009). This means that plant and crop root systems reach 
water reservoirs that have remained undetected by recent satellite platforms.  

To obtain information on subsurface structures (texture and layering), the inversion of 
geophysical data, such as ground-based multi-coil electromagnetic induction (EMI) can be 
used. EMI instruments house multiple coils with increasing separations in a rigid boom to 
simultaneously measure apparent electrical conductivity (ECa) values of increasing but 
overlapping depth ranges of investigation (DOI). In principle, inversions of multi-coil EMI 
data can disentangle the depth-specific electrical conductivity  layers. However, most EMI 
systems currently do not provide quantitative ECa values due to external influences; logger, 
cables, etc. (Gebbers et al., 2009). This hinders reliable EMI data inversion and only allows 
qualitative interpretations (Binley et al., 2015). To obtain reliable subsurface images, 
quantitative EMI data are needed (Mester et al., 2011; Minsley et al., 2012; Whalley et al., 
2017). Measured ECa values can be calibrated, for example, using electrical resistivity 
tomography (Lavoué et al., 2010) or vertical electrical sounding data (Thiesson et al., 2014). 
Calibrated EMI data inversions have successfully obtained quantitative transect images 
(Mester et al., 2011) and field-scale soil structures (von Hebel et al., 2014) as well as soil 
water content changes during the growing season of wheat crops (Shanahan et al., 2015).  

A geophysical link between soil and plant patterns is observed (Robinson et al., 2008) 
and investigated by correlating remotely sensed satellite-based leaf area index data and 
ground-based ECa values measured by a multi-coil EMI instrument (Rudolph et al., 2015).   
Increasing data correlations for increasing DOI  imply that the subsoil may be responsible 
for better crop development at water scarcity. Similar results were found by comparing crop 
development and spatial ECa patterns, where correlations were stronger in drier than in 
wetter growing seasons (Stadler et al., 2015). However, since ECa is a depth range average 
value (McNeill, 1980) these data cannot return depth-specific soil-plant interaction 
information.  

Sun-induced fluorescence (F) is directly related to photosynthetic rates and 
momentary plant performance. Passively, F can be measured at the leaf- and canopy-level 
using high performance commercial spectrometers such as FloxBox (JB Hyperspeed, Neuss, 
Germany) (Burkart et al., 2015) and at the field or regional level using airborne spectrometer 
such as HyPlant (Forschungszentrum Jülich, Germany, in cooperation with SPECIM-Spectral 
Imaging Ltd., Finnland) (Rascher et al., 2015). Recently, remote F measurements became 
widely available on satellite level. A few satellites already provide F data with a low spatial 
resolution, e.g., OCO-2 (1.3 × 2.25 km2), GOSAT (10 km diameter), and GOME-2 
(80 × 40 km2) (Frankenberg et al., 2014; Joiner et al., 2013). Currently, ESA is implementing 
a high (300 m) resolution F satellite (Drusch et al., 2017).  
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Fluorescence serves as an indicator for limited water availability and active 
fluorescence techniques are widely used to detect drought stress in plants (Ögren, 1990; 
Razavi et al., 2008; Takayama et al., 2011). Recently, passive F measurements have been 
used to detect drought-induced down regulation of photosynthesis 
al., 2010; Rascher et al., 2009; Schickling et al., 2016).  

The high resolution study presented here investigates how and at what depth 
subsurface structures control above-surface plant development and photosynthetic rates. We 
combine ground-based quantitative EMI data and their depth-specific inversion results with 
airborne plant performance data both of 1x1 m pixels. This finds the interaction link of plants 
with the top- and the subsoil, which improves our understanding of the subsurface role on 
plant performance.    

 

2 Methods and data processing 

2.1 Study site 

The study site (~ 1.4 ha large agricultural field, termed F13, with south-western 
corner coordinate E: 320683, N: 5638407 in UTM Zone 32N) is close to Selhausen 
(Germany) and is part of the Transregional Collaborative Research Center on Patterns in the 
Soil Vegetation Atmosphere System (SFB-TR32) (Simmer et al., 2015). The Selhausen area 
is located within the southern part of the Lower Rhine Embayment close to the Rur River 
with a mean annual temperature of 10.2 °C and 715 mm annual precipitation (Ali et al., 
2015).  

In the Quaternary, river systems formed the landscape of the Selhausen area. F13 is 
located in the sand and gravel dominated upper terrace formed by the ancient Rur River in the 
Pleistocene (Weihermüller et al., 2007). Melting water after Weichselian glaciation formed 
breakaways and secondary channels that transported and deposited finer material in an 
approximately south-north running paleo-river channel system (Milbert, 2016) that was 
filled-up and buried with aeolien loess sediments (Rudolph et al., 2015).  

 

2.2 Ground-based electromagnetic induction    

Multi-coil EMI instruments use one transmitter coil to generate a primary magnetic 
field while inducing eddy currents in the electrical conductive subsurface, which in turn 
generate a secondary magnetic field (Keller & Frischknecht, 1966). The ratio of the 
secondary and primary magnetic field is related to the ground apparent electrical conductivity 
(Ward & Hohmann, 1988).  

 The current research used a three- and a six-coil EMI instrument working 
respectively at 30 kHz and 25 kHz with vertical coplanar (VCP) and horizontal coplanar 
(HCP) coils. Figure 1 shows the coil specific local depth sensitivity curves. The crosses mark 
the DOI that has been defined by 0.75 and 1.5 times the coil separation (s) for VCP and HCP 
coils, respectively. The DOI indicated the depth range where the sensitivity accumulated to ~ 
70% from surface to depth (McNeill, 1980). The three VCP and six HCP sensitivities indicate 
that simultaneous measurements using both multi-coil EMI instruments cover shallow and 
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measured ECa values and that quantitative inversions disentangle these overlapping 
contributions while returning depth-specific information.  

 
The ground-based measurements were performed on 18/04/2016 with an average air 

temperature of 7.5 °C and no precipitation on bare soil. Both EMI instruments were inserted 
into plastic sleds and warmed-up for 30 min. A single frequency GPS system and a data 
logger were attached to a pole at 0.6 m and 1 m height, respectively, with the cables fixed to 
reduce measurement influences. During the measurements, ECa and GPS values were 
continuously sampled with 5 Hz and a quad-bike driving around 6-8 km/h pulled the sleds. 

tracks located around three meters apart.  
Figure 2a exemplarily shows the recorded high resolution georeferenced ECa values 

for the HCPs180 coil configuration after outlier removal using a histogram filter (von Hebel 
et al., 2014). A nearest neighbor interpolation regridded the qualitative ECa values of each of 
the nine coil configurations to a map with a spatial resolution of 1x1 m and 10609 regular 
nodes as shown in Figure 2b.  

 

2.3 ECa calibration using multiple vertical electrical sounding  data  

To calibrate the large-scale ECa maps and obtain quantitative EMI data, we 
performed collocated EMI and VES measurements at three calibration locations (CL1 to CL3 
shown in Figure 2a) that ideally cover the observed ECa ranges. At each CL, the EMI 
instruments recorded ECa values for around 30 sec and their mean was used for calibration 
against predicted ECa values. To predict ECa values, VES data were acquired using the 
Schlumberger electrode array with outer electrode spacing between 0.5 m and 5 m to ensure 
shallow and deep apparent electrical resistivity ( ) measurements. In total, 14 a 
were recorded at each CL and subsequently inverted, see supporting information (SI), to 
obtain the vertical electrical conductivity distribution. These were inserted into the Maxwell-
based full solution EMI forward model (Keller & Frischknecht, 1966; Wait, 1951) along with 
the EMI instrument specifications. The predicted ECa values reflect an EMI measurement of 
pure subsurface without external influences. A linear regression of measured and predicted 
ECa values results in coil configuration specific calibration factors (see SI) that turn the 
qualitative ECa maps into calibrated data, which enable quantitative inversions. The HCPs97 
map contained around 0.6% negative ECa values after calibration such that these data were 
excluded in the inversion and following analysis.  

 

2.4 Inversion of quantitative large-scale EMI data  

To obtain the depth-specific layered electrical conductivity distribution of field F13, 
the quantitative EMI data were inverted using the shuffled complex evolution (SCE) 
algorithm (Duan et al., 1993). The parallelized horizontally layered quasi-3D three-layer 
inversion scheme (von Hebel et al., 2014) ran on the JURECA supercomputer (Krause & 
Thörnig, 2016).  
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SCE combines deterministic and probabilistic strategies and treats the global 
optimization as an evolution process. Parameter combinations are evaluated, periodically 
shuffled, and newly sampled into subpopulations, i.e., complexes, to find strong and discard 
weak parameters. The Maxwell-based full solution EMI forward model modelled accurate 
EMI data and the misfit to real data was evaluated using the L1-norm without smoothing or 
damping. The L1-norm performs successful for EMI data inversion (Mester et al., 2011) and 
is most appropriate for abrupt layer changes (Loke et al., 2003), which is expected at the 
agricultural field F13.  

The global optimization starts sampling from a parameter space given the nature of 

optimized in-between double of the maximum and half of the minimum calibrated ECa 
values. The minimum layer thicknesses were set to 0.1 m. The maximum first layer thickness 
was 0.35 m because of the ploughing depth. The maximum second layer thickness was 0.65 
m corresponding to the peak sensitivity of HCPs180 (see Figure 1). To find the global 
minimum, SCE performed a maximum of 9000 function evaluations, 10 evolution loops, or 
stopped when the improvement was lesser than 1% compared to the previous evaluation for 
each of the 1x1 m grid nodes.  

The ground-based multi-coil EMI data processing, calibration, and inversion flow is 
summarized in the upper part of Figure 3. In the lower part, the airborne HyPlant data, 
processed to quantitative maps of normalized difference vegetation index and sun-induced 
fluorescence as described next, were correlated to the depth-  at three 
representative depths through the quasi-3D volume and to the ECa maps.  

 

2.5 Airborne plant performance data 

Illuminated photosynthetically active plants reflect, transmit and absorb light. The 
light re-emission is called fluorescence. Under optimal conditions about 80% of the absorbed 
light energy is used for photochemistry while the residual energy is lost as heat and dissipated 
as chlorophyll fluorescence emission. Therefore, F comes from the core of photosynthetic 
machinery and is directly linked with photosynthetic activity of the plant (Baker, 2008; 
Porcar-Castell et al., 2014).  

  
The F spectrum is characterized by two broadband peaks centered in the red (685 nm) 

and far-red (740 nm) spectral regions (Rossini et al., 2015), which is close to the atmospheric 
oxygen O2-B and O2-A absorption lines. To remotely sense the F spectrum, we used the high 
resolution airborne imaging spectrometer HyPlant. The sensor is a push-broom spectrometer 
that consists of two modules called DUAL and FLUO module (Rascher et al., 2015). The 
DUAL module measures radiance from 380 nm to 2500 nm. The spectral resolution is 3 nm 
and 10 nm in the VIS/NIR and SWIR region, respectively. The highly accurate FLUO 
module measures radiance from 670 nm to 780 nm with ± 0.25 nm resolution. By this, the 
FLUO module resolves the spectral regions of the red and far-red fluorescence peaks with 
sub-nanometer resolution enabling the retrieval of F in the two oxygen absorption lines and 
some adjacent Fraunhofer lines. 
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To obtain fluorescence data at 760 nm (F760) and at 687 nm (F687) using airborne 
measurements, we applied the improved Fraunhofer line depth (iFLD) approach (Wieneke et 
al., 2016), a modification of the 3FLD approach (Maier et al., 2003) further developed by 
(Damm et al., 2015). The iFLD method based on relating reflectance and F inside and outside 
the oxygen absorption bands using polynomial functions. During the retrieval, the F signal 
was separated from incoming to the sensor reflected by canopy and atmospheric particle 
radiation. Various atmospheric factors were approximated using atmospheric radiative 
transfer models such as MODTRAN-5 (Berk et al., 2004) and the MODTRAN interrogation 
technique introduced by Verhoef & Bach (2003; 2007). iFLD uses reference surfaces free of 
any F emission (e.g., bare soil) and retrieves a correction factor that allows adjusting the 
upward transmittance of atmosphere. After F retrieval a 2D digital (disk) filter that uses 2D 
convolution was applied to reduce noise. 

 
The normalized difference vegetation index (NDVI) that quantifies green vegetation 

was obtained as final product of the DUAL spectrometer among further vegetation indices in 
three steps. First, pre-processing for the wavelength and radiometric calibration using 
CaliGeoPro (HyPlant manufacturer SPECIM, Finland), next the atmospheric correction to 
top-of-canopy reflectance data using the ATCOR software (Schläpfer et al., 2012), and 
finally NDVI was calculated by 

  

 ,  (1) 

 
where  are top-of-canopy reflectance values averaged between 
795 nm and 810 nm and 665 nm and 680 nm, respectively.  

The 1x1 m hyperspectral  data were collected during a 600 m height flight overpass 
on 30/6/2015 between 14:40 and 15:00 local time after solar noon with clear sky and winter 
wheat at F13. Both May and June were relatively hot (19°C and 23°C mean temperature) and 
dry (25 mm and 31 mm cumulative precipitation) such that drought stress was expected.  
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3 Combined topsoil/subsoil and plant performance analysis 

Figure 4a shows the ground-based quantitative ECa maps for the nine different EMI 
coil configurations obtained after VES-based calibration and Figure 4b presents three slices 
through the quasi-3D volume obtained after the three-layer EMI data inversion. Soil cores 
were taken at locations BH1-6 and BH7 to validate the inverted interface depths.  

Figure 4c displays the quantitative NDVI, F687, and F760 maps. Here, the north-
south (N-S) directed paleo-river channel structure clearly showed up with higher amplitudes 
in the plant performance data. High NDVI values (approximately 0.6 to 0.9) correspond to 
dense green vegetation, while senescing crops usually show moderate values (approximately 
0.2 to 0.5) (Sultana et al., 2014). The values of field F13 indicate that the winter wheat 
reached senesce earlier at the coarse textured soil, which result in lower fluorescence. 
Simultaneously, the wheat growing above the N-S directed paleo-river channel was still 
green (NDVI ~ 0.75) and photosynthetically active, which resulted in increased F687 and 
F760 values.   

A similar N-S directed pattern was observed in all calibrated ECa maps presented in 
, whereas for the shallower 

Using ECa, the specific depth causing the 
plant pattern cannot be determined. Instead, quantitative quasi-3D inversions are necessary. 

th slices at z = 0.15 m, 0.50 m, and 1 m. The 
ploughing layer (z = 0.15 m)  
explanation of the observed plant patterns. In the slice at 1 m depth, the N-S directed 

0.
were present in the south.  

At locations BH1-6, six soil cores were taken with 1 m distance in N-S direction. 
These showed a ploughing layer of  ~ 0.3 m overlying a clayey-silt layer until the top of the 
clay-rich paleo-river channel at  (mean ± std) 0.7 m ± 0.2 m depth. The samples confirmed 
the EMI inversions, where the mean inverted paleo-river channel top was at 0.7 m ± 0.3 m 
depth for the six locations (see SI). The soil sampled at borehole BH7 consisted of low 
cohesive gravelly soil. 

Since the buried paleo-river channel carries fine textured soil and the maps of above-
surface plant performance (Figure 4c) showed the paleo-river channel pattern, the crops 
likely access nutrient and water reservoirs in the deeper subsoil. The paleo-river channel 
buried at ~ 1 m depth as identified by the EMI inversion results inherently has a larger water 
holding capacity resulting in more plant available water as compared to the surrounding 
coarse material.  

To quantify the top- and subsoil-plant interaction, we calculate the Pearson correlation 
coefficient (r) between the subsurface EMI and above-surface HyPlant data that showed an 
approximate linear relation (see SI).  Figure 4d shows the correlation of ECa with NDVI, 
F687, and F760. The increasing r (0.5 < r < 0.79) with increasing DOI indicates that the 
deeper subsoil is increasingly responsible for crop performance. However, specific depths 
cannot be distilled using ECa maps.  

 
Correlations between the depth- obtained by EMI inversion with NDVI, 

F687, and F760 (Figure 4e) show that the ploughing layer played no role, since r < 0.35. 



 

© 2018 American Geophysical Union. All rights reserved. 

Intermediate r values were obtained for the intermediate layer. The r values up to 0.72 for the 
deeper subsoil (z  1 m) show that the material at this depth was responsible for the increased 
crop performance. Although the EMI and F data were not measured at the same time, the 
ground truth soil cores confirmed the subsoil structures that interact with the crops.  

 
Whereas relatively large r values were obtained for the VCPs32 coil configuration 

with small DOI (0-0.2 m), the depth-specific correlation. 
This is due to the fact that depths below the DOI contribute ~ 30% to the measured ECa (see 
also Figure 1). Especially when the upper layer is relatively homogeneous, electrical 
conductive material beyond the DOI can strongly contribute to ECa as shown here.   

 
Care should be taken when directly correlating ECa and plant data, because ECa is a 

depth range average value reaching beyond the usually assumed DOI. To accurately 
determine the depths at which the ECa patterns originate from, quantitative EMI data 
obtained by proper calibration needs to be inverted using an accurate EMI forward model as 
introduced by von Hebel et al. (2014). Here, correlating hyperspectral plant data and depth-
specific quasi- disentangled the top- and subsoil-plant interaction.  

 

 

4 Conclusions 

We investigated the effect of subsurface soil properties on plant performance by 
combining ground-based geophysical and airborne plant data measured in dry states over an 
area of 1.4 ha with 1x1 m pixels. Using quantitative multi-coil EMI data inversions, we 
obtained depth-specific soil information that was confirmed by soil coring. This was possible 
after ECa calibration based on VES data of three locations covering the large-scale ECa 
range. 

 
A significant correlation of the inverted depth-specific information and the airborne 

plant data show that the deeper subsoil, a paleo-river channel buried at around 1 m depth 
carrying loess sediments, drives plant performance. This is most likely due to the large 
water/nutrient pool. These vital plant resources increase photosynthetic activity over that of 
the plants growing above the surrounding coarser soil. Since ECa values cannot be related to 
specific depths, quantitative multi-coil EMI data inversions are needed to link depth-specific 
soil to plant interaction.  

Distinct sun-induced fluorescence patterns were  created by structural differences and 
therefore water-holding capacity differences in soil at depths of 1 m, which means that F data 
can contain soil moisture information at depth. Together with quantitative EMI data 
inversions, this information can be used to reduce existing uncertainties in assessing the 
efficiency with which plants access and use the soil water/nutrient resources. This new 
approach will help to inform and improve soil-plant-atmosphere models for root water uptake 
processes as well as harvest predictability tools. 
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Figure 1: Local depth sensitivities of (a) the three-coil CMD-MiniExplorer  used with vertical coplanar 

(VCP) coils with separations (s) of  32, 71, and 118 cm and (b) the six-coil CMD-MiniExplorer Special Edition  used 

with horizontal coplanar (HCP) coils with s = 35, 50, 71, 97, 135, and 180 cm both manufactured by GF-Instruments 

(Brno, Czech Republic). The crosses indicate the depth range of investigation (DOI) where the cumulative sensitivity 

(CS) is ~ 70%. Note that deeper material contribute to ECa.  
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Figure 2: (a) Filtered and smoothed ECa values of the HCPs180 coil configuration. Three calibration 

locations (CL) were selected in the field during the EMI measurements. At each CL, EMI measurements and vertical 

electrical soundings (VES) using a Lippmann 4point light 10W (Lippmann Geophysikalische Messgeräte, Schaufling, 

Germany) were performed. Since the ECa range of F13 is covered, these collocated measurements calibrated the 

large-scale ECa maps. (b) Regridded qualitative ECa map with 1x1 m nodes. 
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Figure 3: Overview of understanding soil-plant interaction by combining the ground-based subsurface and 

airborne plant data. The measured multi-coil electromagnetic induction (EMI) data were calibrated based on vertical 

electrical sounding (VES) data. The obtained quantitative EMI data were inverted to obtain quantitative depth-

specific quasi-3D electrical conductivity slices, which allow investigating the depth-specific topsoil/subsoil role on 

plant performance. The depth range averaged ECa maps were also correlated to the airborne HyPlant data for 

comparison. 
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Figure 4: Investigating topsoil/subsoil-plant interaction by combining ground-based EMI, airborne 

greenness (NDVI), and fluorescence data (F687, F760).  (a) Quantitative ECa maps for VCP coils (top row) and HCP 

coils (middle and lower row) with increasing DOI. B) Depth-specific slices through the inverted quasi-3D electrical 

conductivity model for the ploughing layer at 0.15 m, at 0.5 m depth, where the soil material changed, and at 1 m 

depth, where the paleo-river channel is clearly visible. Six soil samples at BH1-6 showed a mean plough horizon of  ~ 

0.3 m depth, a clayey-silt layer until  0.7 m ± 0.2 m depth (where the mean inverted depth ± std was  0.7 m ± 0.3 m), 

and a clay-rich zone underneath. At BH7, gravelly soil with low cohesion to the Pürkhauer sampling device was 

present. C) Airborne NDVI, F687, and F760 maps that show the paleo-river channel pattern. In D) and E) the 

 are respectively 

calculated. The increasing r with increasing DOI shown in panel D indicates that deeper subsoil was responsible for 

plant 3(z > 1 m) was responsible for plant performance (r 

> 0.62), whereas the ploughing layer played no role (r < 0.35). 

 


