001     850759
005     20230426083200.0
024 7 _ |a 10.1103/PhysRevB.97.245429
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/19444
|2 Handle
024 7 _ |a WOS:000436907800012
|2 WOS
024 7 _ |a altmetric:32406526
|2 altmetric
037 _ _ |a FZJ-2018-04537
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Moors, Kristof
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Magnetotransport signatures of three-dimensional topological insulator nanostructures
260 _ _ |a Woodbury, NY
|c 2018
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1532950130_1219
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We study the magnetotransport properties of patterned 3D topological insulator nanostructures with several leads, such as kinks or Y-junctions, near the Dirac point with analytical as well as numerical techniques. The interplay of the nanostructure geometry, the external magnetic field, and the spin-momentum locking of the topological surface states lead to a richer magnetoconductance phenomenology as compared to straight nanowires. Similar to straight wires, a quantized conductance with perfect transmission across the nanostructure can be realized across a kink when the input and output channels are pierced by a half-integer magnetic flux quantum. Unlike for straight wires, there is an additional requirement depending on the orientation of the external magnetic field. A right-angle kink shows a unique π-periodic magnetoconductance signature as a function of the in-plane angle of the magnetic field. For a Y-junction, the transmission can be perfectly steered to either of the two possible output legs by a proper alignment of the external magnetic field. These magnetotransport signatures offer new ways to explore topological surface states and could be relevant for quantum transport experiments on nanostructures which can be realized with existing fabrication methods.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
542 _ _ |i 2018-06-29
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 1 7 |a Information and Communication
|0 V:(DE-MLZ)GC-120-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Schüffelgen, Peter
|0 P:(DE-Juel1)165984
|b 1
|u fzj
700 1 _ |a Rosenbach, Daniel
|0 P:(DE-Juel1)167347
|b 2
|u fzj
700 1 _ |a Schmitt, Tobias
|0 P:(DE-Juel1)171406
|b 3
|u fzj
700 1 _ |a Schäpers, Thomas
|0 P:(DE-Juel1)128634
|b 4
|u fzj
700 1 _ |a Schmidt, Thomas L.
|0 P:(DE-HGF)0
|b 5
773 1 8 |a 10.1103/physrevb.97.245429
|b American Physical Society (APS)
|d 2018-06-29
|n 24
|p 245429
|3 journal-article
|2 Crossref
|t Physical Review B
|v 97
|y 2018
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.97.245429
|g Vol. 97, no. 24, p. 245429
|0 PERI:(DE-600)2844160-6
|n 24
|p 245429
|t Physical review / B
|v 97
|y 2018
|x 2469-9950
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/850759/files/PhysRevB.97.245429.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/850759/files/PhysRevB.97.245429.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/850759/files/PhysRevB.97.245429.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/850759/files/PhysRevB.97.245429.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/850759/files/PhysRevB.97.245429.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/850759/files/PhysRevB.97.245429.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:850759
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165984
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)167347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171406
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128634
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts
999 C 5 |a 10.1143/JPSJ.77.031007
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.82.3045
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.83.1057
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/978-3-642-32858-9
|1 S.-Q. Shen
|2 Crossref
|9 -- missing cx lookup --
|y 2012
999 C 5 |1 M. Franz
|y 2013
|2 Crossref
|t Topological Insulators
|o M. Franz Topological Insulators 2013
999 C 5 |a 10.1016/j.physe.2011.11.003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0034-4885/76/5/056501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nl903663a
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms1771
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/pssr.201206393
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.101.086801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.82.041104
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat2609
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nnano.2011.19
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nn2024607
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep01212
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep01564
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.110.186806
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4809826
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4829748
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nl402841x
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nl500822g
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms8634
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4935244
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nnano.2015.293
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.94.205424
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acsnano.5b07368
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep29493
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acsnano.6b03537
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.nanolett.6b00400
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep19014
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys1270
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.105.036803
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.82.045122
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.89.085305
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.98.106803
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.95.245137
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.105.136403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.86.155431
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.95.165424
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1073/pnas.1410591111
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jcrysgro.2016.03.012
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nn204239d
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms9816
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4938394
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jcrysgro.2017.03.035
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0256-307X/31/6/067304
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.113.107003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.95.035415
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0550-3213(81)90361-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.10.2445
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/16/6/063065
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1137/S0895479899358194
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.parco.2005.07.004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.81.115407
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.105.156803
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epjb/e2016-70041-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.97.035157
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.85.245402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nnano.2013.198
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.90.205416
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys1915
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.88.035121
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevX.6.031016
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevX.7.031048
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1133734
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.91.245112
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21