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We study the magnetotransport properties of patterned 3D topological insulator nanostructures with several

leads, such as kinks or Y-junctions, near the Dirac point with analytical as well as numerical techniques. The

interplay of the nanostructure geometry, the external magnetic field, and the spin-momentum locking of the

topological surface states lead to a richer magnetoconductance phenomenology as compared to straight nanowires.

Similar to straight wires, a quantized conductance with perfect transmission across the nanostructure can be

realized across a kink when the input and output channels are pierced by a half-integer magnetic flux quantum.

Unlike for straight wires, there is an additional requirement depending on the orientation of the external magnetic

field. A right-angle kink shows a unique π -periodic magnetoconductance signature as a function of the in-plane

angle of the magnetic field. For a Y-junction, the transmission can be perfectly steered to either of the two

possible output legs by a proper alignment of the external magnetic field. These magnetotransport signatures

offer new ways to explore topological surface states and could be relevant for quantum transport experiments on

nanostructures which can be realized with existing fabrication methods.

DOI: 10.1103/PhysRevB.97.245429

I. INTRODUCTION

A decade ago, three-dimensional topological insulators (3D
TIs) entered the scene of condensed matter physics and since
then they have remained in the center of attention. Rightfully
so, as they offer an interesting theoretical and experimental
playground for fundamental research as well as applications,
combining relativistic and quantum physics in a single con-
densed matter system, based on aspects of topology [1–5].

Typical properties of 3D TIs are strong spin-orbit coupling,
leading to a band inversion in the bulk spectrum, and the ap-
pearance of gapless surface states which are protected by time-
reversal symmetry. These surface states are well described
by a single 2D spin-momentum locked Rashba-Dirac cone,
which has been confirmed by angle-resolved photoemission
spectroscopy (ARPES) measurements in a wide range of 3D
TI materials.

As the 3D TI materials are typically heavily doped, iden-
tifying surface state transport in bulk samples has proven to
be quite a challenge [6,7]. By studying 3D TI nanostructures
instead [8–10], the surface-to-volume ratio is increased, which
in turn increases the detectability of surface state transport.
However, confinement generally induces a gap in the surface
state spectrum, which increases as the cross section is reduced.
Interestingly, a gapless spectrum can be restored through
the Aharonov-Bohm (AB) effect by piercing the nanostruc-
ture with a half-integer magnetic flux [11,12]. This leads to
unique magnetotransport signatures that one is able to measure
systematically in various 3D TI nanowire samples [13–29],
e.g., shifted Shubnikov-de Haas and flux quantum-periodic
AB oscillations and weak antilocalization due to the absence
of backscattering. Furthermore, these surface states have been
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probed directly, using, e.g., nano-ARPES or Kelvin probe
microscopy techniques [28,30,31].

There is a solid understanding of uniaxial 3D TI nanowire
(or ribbon) surface states in the presence of a magnetic field
and different approaches have been introduced to model this
system, e.g., effective and continuous (Dirac-like) surface
models [32–35], surface and bulk lattice models [36,37], and
a Luttinger liquid description in the 1D limit [38]. Here, we
extend these efforts to other 3D TI nanostructures, such as
kinks or junctions, which have been proposed as the basic
building blocks of 3D TI nanowire circuits for Majorana-based
quantum information processing, for example [39,40].

The paper is structured as follows. Section II contains a
discussion on the experimental feasibility of these structures,
as well as concrete fabrication steps. In Sec. III, the models
that are used to model the topological surface states and their
transport properties are introduced, followed by an overview
of the magnetotransport properties in Sec. IV. We conclude
and provide an outlook in Sec. V.

II. EXPERIMENTAL FEASIBILITY

We briefly discuss the experimental feasibility of advanced
3D TI nanostructures like Y-junctions, as being considered
below. An in situ fabrication method based on molecular
beam epitaxy (MBE) grown tetradymite 3D TIs will thus be
presented. The necessity of an in situ process is based on
observations of a shift of the Fermi level at ambient conditions
[41].

For fabrication, this requirement excludes etching of 3D TI
thin films to nanostructures. Instead, a selective area growth
approach [42] is employed and improved such that it allows
for both the fabrication of advanced 3D TI nanostructures as
well as the protection of the Dirac system of the 3D TI. For this
technique, a Si(111) substrate with a sacrificial SiO2 (5 nm)
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FIG. 1. (a) A sketch of a cylindrical nanowire (NW) in the presence of a magnetic field. The bulk region and its surface, which hosts the

topological surface states, are indicated in blue and orange, respectively. (b) Top view of rectangular 3D TI nanostructures (kink and Y-junction).

(c)–(f) Selective area growth of 3D TI nanostructures. (c) A Si(111) substrate with a Si3N4/SiO2 mask layer is prestructured. (d) During MBE

growth, the substrate temperature is adjusted such that the 3D TI only nucleates on the Si(111) surface. The surface can be passivated with

a final Al capping in situ. This capping oxidizes at ambient conditions and thereby forms a protective capping layer. (e) SEM top view on a

rectangular 3D TI (Bi0.07Sb0.93)2Te3 nanowire with a width of 50 nm. The cross section can be seen in (f), prepared by focused ion beam.

and a Si3N4 mask layer (25 nm) is used. After the mask
layer has been prestructured by electron beam lithography
and reactive ion etching, the sacrificial layer is smoothly
etched in the structures of the mask by hydrofluorid acid
in order to uncover the Si(111) substrate in these areas [see
Fig. 1(c)]. During MBE growth, the substrate temperature is
set such that nucleation of 3D TI only occurs on the Si(111)
surfaces in the structures but not on the Si3N4 mask layer [see
Fig. 1(d)]. After selective area growth, the sample is passivated
in situ with an Al capping layer which oxidizes at ambient
conditions and protects the top surface from degradation
[43].

In that way, 3D TIs can be shaped in any structure which can
be patterned in the mask layer and still preserve their quality.
With this process, straight 3D TI nanotrenches with a width
down to 50 nm have already been prepared. Scanning electron
microscopy (SEM) images of such structures can be seen in
Fig. 1(e) (top view) and in Fig. 1(f) (cross section). As it has
been reported before, the Fermi level in tetradymite 3D TIs
can be adjusted by either employing a vertical topological p-n
junction [44] or a ternary compound [45]. To protect the 3D
TI surface from ambient conditions even in the area of the
electrodes, an additional in situ stencil lithography method can
be used to contact the 3D TI nanostructures [46].

III. MODEL

For straight cylindrical 3D TI nanowires, one can safely
resort to an effective 2D surface Rashba-Dirac model. For
3D TI nanostructures with arbitrary shapes and cross sections
made of a certain TI material, we employ a tight-binding model
based on the effective 3D continuous Hamiltonian, introduced
by Zhang et al. [32]. These two approaches will be discussed
in the following subsections.

A. 2D Rashba-Dirac Hamiltonian

The surface states of a 3D TI can be effectively described by
the bound states of a massive 3D Dirac Hamiltonian for which
the Dirac mass undergoes a sign flip at the TI surface. For a
flat surface of a 3D TI slab, for example, this leads to the well-
known 2D Rashba-Dirac Hamiltonian, ĤRD = vF(p̂yσx −
p̂xσy), featuring a single orthogonally spin-momentum locked
Dirac cone. For a general curved surface, the 2D Hamiltonian
obtains a curvature term and can be written as follows [33]:

Ĥsurf. = −(vF/2)[h̄∇ · n + n · (p̂ × σ ) + (p̂ × σ ) · n], (1)

with p̂ the momentum operator on the surface and n a unit
vector normal to the surface. We can also add a magnetic field
to the surface Hamiltonian through minimal coupling, p̂ →
p̂ − eA, with electron charge e (<0). We will now consider the
surface of a cylindrical 3D TI nanowire oriented along the x

direction (n = er ) with radius R (constant curvature 1/R) and
a constant magnetic field parallel to the cylinder described by
the vector potential A(r,φ) = B‖r eφ/2. We will only consider
divergenceless vector potentials throughout the text according
to the Coulomb gauge. The eigenstates �(x,φ) of this system
have the following form, based on the symmetries of the
system:

�(x,φ) ≡ eikx+ilφ

(

�1

eiφ �2

)

(l = 0,±1,±2, . . .), (2)

with wave vector k and quantized angular momentum l. The
Hamiltonian and energy dispersion relation become

Ĥcyl.(j,k) = h̄vF

(

−j/R −ik

ik j/R

)

,

Eν(j,k) = ν h̄vF

√

k2 + (j/R)2 (ν = ±1),

(3)
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with j ≡ l + 1/2 + �/�0 and � = B‖πR2 the magnetic flux
piercing the cylinder, �0 = −h/e > 0 being the magnetic
flux quantum and j the generalized angular momentum,
containing contributions from the curvature of the surface and
the magnetic flux. The spectrum has a pair of gapless helical
subbands (ν = ±1, j = 0) when a half-integer magnetic flux,
�/�0 = (2m + 1)/2 (m ∈ Z), is piercing the wire.

From Eqs. (2) and (3) and box normalization of the wave
function (x ∈ [−L/2,L/2], k = 2πn/L, n ∈ Z), we get the
following spinor solutions:

(

�1

�2

)

=
1

√
2πRL



















(

sin γν(j,k)

i cos γν(j,k)

)

(νj � 0)

(

cos γν(j,k)

i sin γν(j,k)

)

(νj � 0)

, (4)

with

γν(j,k) ≡ arctan

(

νkR

|j | +
√

k2R2 + j 2

)

, (5)

always chosen to lie in the interval [−π/4,π/4]. This solution
is a two-component spinor � that lives on the 2D surface of
the cylinder. The corresponding 3D four-component spinor χ

that extends into the bulk region, with constant Dirac mass M

(and infinite Dirac mass with opposite sign considered outside
of the cylinder), is given by

χ (x,r,φ) = ϑ(R − r) e|MvF|(r−R)/h̄

(

�(x,φ)
iσr�(x,φ)

)

, (6)

allowing us to assign the penetration depth λ = h̄/|MvF| to the
surface state. These four-component spinors can be compared
with the four-orbital surface state wave functions that are
obtained from the 3D effective model below.

A magnetic field perpendicular to the axial direction of
the wire will, in general, break time-reversal symmetry as
well as the rotational symmetry around the x axis. To assess
its impact, we apply perturbation theory with perturbation
Hamiltonian Ĥ⊥ = −evFB⊥R sin φ σ̂φ , arising from a vector
potential A = B⊥r sin φ ey that corresponds to a magnetic field
along the y direction, B⊥ey = B⊥(cos φ er − sin φ eφ). The
wave vector k along the axial (transport) direction remains a
valid quantum number, while states with different values for ν

and j get mixed. The gapless j = 0 subband remains gapless
up to second order in the perpendicular magnetic field B⊥,
such that the topological protection is, at least up to a certain
extent, maintained in the presence of a perpendicular magnetic
field. The first-order correction cancels out completely for
the j = 0 subband while the second-order correction yields
a renormalization of the Fermi velocity,

vF → vF[1 − (eB⊥R2)2/(πh̄)2]

= vF[1 − (2B⊥R2/�0)2],
(7)

which is symmetric around E = 0 and always reduces
the magnitude. Unlike for the surface of a 3D TI slab, the
energy spectrum remains gapless and the conductance near the
Dirac point is unaffected. When the perpendicular magnetic
field approaches the critical value of Bcrit. ≡ �0/(2R2), the
Fermi velocity is renormalized to zero and the perturbative
result breaks down. The flat gapless subband spectrum that

is obtained in this limit is in agreement with the formation
of Landau levels when a strong perpendicular magnetic field
is applied [47–49]. Note that this calculation depends on the
rotational symmetry of the nanowire and electron-hole symme-
try. To what extent this result holds for general nanostructures
with multiple leads will be verified numerically with the 3D
effective model presented below.

B. 3D effective Hamiltonian

For a more realistic (low energy) description of the surface
states of various 3D TI materials, Zhang et al. introduced the
following effective 3D continuous Hamiltonian [32,34]:

Ĥ3D(k) ≡ ǫ(k) + τzM(k) + σxτxA⊥(kx + iky) + σzτxAzkz,

ǫ(k) ≡ C0 − C⊥
(

k2
x + k2

y

)

− Czk
2
z , (8)

M(k) ≡ M0 − M⊥
(

k2
x + k2

y

)

− Mzk
2
z ,

with z the direction of uniaxial anisotropy and k ≡ (kx,ky,kz).
The four orbitals refer to the electron and hole bands
with spin up and spin down (|E,↑〉, |H,↑〉, |E,↓〉
and |H,↓〉, respectively), with σ (τ ) acting on the
spin(electron-hole)-subspace. This Hamiltonian describes
an insulator when C2

⊥,z < M2
⊥,z and a topologically nontrivial

regime can be unambiguously assigned, namely when the
band inversion parameters M⊥, Mz, and the mass (bulk gap)
parameter M0 have equal signs: M0M⊥,z > 0. The band
inversion of the E and H bands is governed by M⊥,z, while
electron-hole asymmetry is captured by C⊥,z. The parameters
A⊥,z determine the group velocity of the gapless surface states
and finite values for M⊥, Mz prevent the fermion doubling
theorem from applying [50]. Hence, this Hamiltonian can
be safely put on a lattice (see Appendix for more details)
without acquiring unphysical Dirac points, at kx,y,z = ±π/a

for a cubic lattice with lattice constant a for example. The
corresponding terms in the Hamiltonian are also known as
Wilson mass terms [37,51]. Specific values for the parameters
representing various 3D TI materials can be found in Table I.

When considering a 3D TI slab with surface orthogonal
to the z direction with this Hamiltonian, an isotropic gapless
surface state spectrum is obtained, described by the following
2D effective Hamiltonian [4]:

Ĥ3D
surf. = − CzM0/Mz − M⊥

(

p̂2
x + p̂2

y

)

+ sgn(Mz)
√

1 − (Cz/Mz)2A⊥(p̂xσy − p̂yσx). (9)

The wave function profile perpendicular to the x-y surface of
the kx = ky = 0 surface state has the following form when the
3D TI is confined to the z > 0 region [4,34]:

χ (z) = ( c1 −c1 c2 c2 )⊺ (e−q+
z z − e−q−

z z),

q±
z ≡

1

2

√

A2
z

M2
z − C2

z

±

√

1

4

A2
z

M2
z − C2

z

−
M0

Mz

,
(10)

with two independent parameters c1 and c2 (up to normaliza-
tion). The wave function extends into the bulk with a character-
istic penetration depth (or one could say surface state thickness)
λz that can be defined as λz ≡ max{1/ℜ(q+

z ),1/ℜ(q−
z )}. This

solution is for confinement along z and analogous solution
can be obtained for confinement along x and y. The different
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TABLE I. The parameters of the effective 3D Hamiltonian for Bi2Se3, Bi2Te3, and Sb2Te3 are listed [3,32,34], as well as a set of parameters

for an isotropic and electron-hole symmetric toy model.

Toy model Bi2Se3 (A)[32] Bi2Se3 (B)[34] Bi2Te3 Sb2Te3

M0 (eV) 0.3 0.28 0.28 0.30 0.22

M⊥ (eV · Å2) 15 56.6 44.5 57.38 48.51

Mz (eV · Å2) 15 10.0 6.68 2.79 19.64

A⊥ (eV · Å) 3 4.1 3.33 2.87 3.40

Az (eV · Å) 3 2.2 2.26 0.30 0.84

C⊥ (eV · Å2) 0 −19.6 −30.4 −49.68 10.78

Cz (eV · Å2) 0 −1.3 −5.74 −6.55 12.39

λz (Å) 10 9.01 14.09 / 36.28

λ⊥ (Å) 10 25.90 19.52 20.01 27.82

depth values are presented for the different parameter sets and
confinement directions in Table I. As the band gap of a typical
topologically trivial insulator is very large compared to that of
the known 3D TIs, hard wall confinement at the 3D TI surfaces,
which is understood throughout this text, is an appropriate
approximation.

To model 3D TI nanowires with an arbitrary cross section,
we consider a tight-binding formulation of the effective 3D
Hamiltonian on a cubic lattice with artificial lattice constant a

[1], with a uniform magnetic field inserted through a standard
Peierls substitution. All (band structure and transport) simula-
tions for this tight-binding model have been carried out with
a parallelized implementation of Kwant [52–54], which treats
transport with a scattering approach based on a wave-function
formulation. The conductance is obtained from the scattering
matrix through Landauer’s formula. Our approach is therefore
limited to elastic scattering, neglecting the impact of, e.g.,
electron-phonon or Coulomb interactions. Experimentally, this
transport behavior should be retrieved when the contacts are
close enough to the nanostructure geometry.

The spectrum of a nanowire with and without magnetic
field along the wire axis is presented in Fig. 2. On the
one hand, the gap in Fig. 2(a) agrees well with the value
of h̄vF/R obtained from the 2D Rashba-Dirac model when
considering R =

√
A/π with A the cross sectional area of the

(a) (b)

FIG. 2. The energy spectrum of a 3D TI nanowire with toy model

parameter set of Table I and a 10 × 10 nm2 cross section, considering

the effective 3D Hamiltonian with a = 5 Å, is shown for (a) zero and

(b) effectively half-integer (�/�0 ≈ 0.6) magnetic flux quantum. The

surface (bulk) states are presented in orange (blue). The cylindrical

nanowire surface spectrum given by Eq. (3) is shown in black dashed

lines for (a) integer and (b) half-integer generalized angular momenta,

considering a cylinder with equal cross section. The surface state

presented in Figs. 3(c) and 3(d) is indicated with a purple star.

nanowire. This can be expected when the surface states cannot
tunnel through the bulk region [35,38], something which is
exponentially suppressed as long as the surface state thickness
is significantly smaller than the minimal distance required to
cross the bulk region [55]. On the other hand, a minimal total
flux of �/�0 ≈ 0.6 appears to be required in Fig. 2(b) to
close the gap, deviating slightly from the condition that can
be obtained from the Rashba-Dirac spectrum in Eq. (3). The
cause of this offset is found to be the finite thickness of the
surface states and will be discussed below.

An example of a surface state wave function resulting from
the tight-binding model for a 3D TI nanowire with square
cross section can be found in Fig. 3 next to the Rashba-
Dirac-based counterpart for a cylindrical nanowire. The local
density and phase dependence of the different orbitals are
gauge-dependent, but the surface state solutions for orbitals
E↑ (E↓) and H↓ (H↑) are universally related by a constant
phase shift. This relation depends on the geometry of the cross
section, as can be understood from Eq. (6). For a circular cross
section, the orbitals differ by a unit of angular momentum
provided by σr , while Pauli matrices σx,y , carrying zero angular
momentum, provide a constant phase shift in case of a square
(rectangular) cross section.

For magnetotransport, the surface state thickness will be
crucial. It determines the effective piercing magnetic flux,
something which cannot be captured by surface models such
as the 2D Rashba-Dirac model or other effective 2D models
[32–35,37]. When the nanowire cross section is too small
to neglect the surface state thickness, a rescaling of the flux
needs to be considered for a precise tuning of the amplitude
and orientation of the magnetic field. A rescaling ratio α can
be estimated by α ≈ 1 − 〈λ〉C/(2A), with 〈λ〉 the average
surface state thickness along the circumference C. Note that
the Rashba-Dirac and 3D model surface states have equal
thickness here, but this is generally not the case as their
thickness is governed by unrelated parameters in Eqs. (6) and
(10), respectively. From Table I, it is clear that the rescaling
ratio α can vary significantly between different 3D TI materials
and nanowire orientations. In principle, one should be able to
verify this with precise magnetotransport measurements.

IV. MAGNETOTRANSPORT

We will focus on the magnetotransport properties of
three different nanostructures made of connected rectangular

245429-4



MAGNETOTRANSPORT SIGNATURES OF THREE- … PHYSICAL REVIEW B 97, 245429 (2018)

FIG. 3. A cross section of the wave function of a gapless subband state [see Fig. 2(b)] of a (a), (b) cylindrical (c), (d) rectangular 3D TI

nanowire is presented. (a), (c) The phase of the different orbitals (spinor components) is shown in color, with the brightness proportional to

the local orbital density. (b), (d) The local density of the total wave function is indicated. The surface of the nanowire is marked with a (a),

(c) black (b), (d) gray dashed line. (a), (b) The Rashba-Dirac surface state spinor with M = 0.3 eV/v2
F and vF = 3 eV · Å and the (c), (d)

effective 3D Hamiltonian with toy model parameter set of Table I and a = 1 Å are considered, both for a nanowire with cross section equal to

100 nm2.

nanowires: a straight nanowire, a kink with angle γK (here with
γK = π/2), and a Y-junction (see Fig. 1). The simulations are
limited to nanowires with a uniform square cross section of
10 × 10 nm2 without disorder, considering the toy model and
the Bi2Se3 (A) parameter set of Table I. The main trade-off
when considering a larger (smaller) cross sectional area will
be a smaller (larger) required magnitude of the magnetic field

(∝A) versus a smaller (larger) energy window (∝
√
A) in

which the magnetotransport signatures of the gapless subband
will appear. The dependency on cross section size and shape
(e.g., the aspect ratio of a rectangular cross section) and
disorder has already been investigated and reported in detail
elsewhere and will not be discussed further [49,56–58]. For
the Bi2Se3 transport simulations, the direction of uniaxial
anisotropy is considered to be perpendicular to the plane (x-z)
spanned by the legs of the kink or the Y-junction, in line with
the experimental feasibility of these structures. The external
magnetic field on the other hand is always considered with
in-plane orientation, minimizing its perpendicular component.

A. Straight nanowire

The conductance of a straight 3D TI nanowire with toy
model and Bi2Se3 parameter sets is presented in Fig. 4.
The Dirac point is centered at 0 meV for the electron-hole
symmetric toy model and near 71 meV for Bi2Se3. The value
of the latter is well estimated by −M0(C⊥/M⊥ + Cz/Mz)/2 ≈
67 meV, being the average of the Dirac point energy for TI
slab surface states parallel to the x-z and y-z planes [see
Eq. (9)], respectively. The typical diamond tile pattern for the
magnetoconductance is clearly visible in both cases and the
electron-hole asymmetry of Bi2Se3 is barely visible. The flux
rescaling ratio α, which can be extracted from the conductance

profile, is significantly smaller for the Bi2Se3 parameter set, as
expected from the estimate α ≈ 1 − 〈λ〉C/(2A) because 〈λ〉 is
larger for Bi2Se3. The agreement between this estimate for α

and its fitted value from the conductance profile is not perfect,
however, because the lattice constant in our simulations, a =
10 Å, is too large for an accurate retrieval of the surface state
depth profile.

B. Kink

Compared to straight wires, a much richer magnetotransport
behavior can be expected for kinks. A priori, the lack of

FIG. 4. The conductance of a 10 × 10 nm2 3D TI nanowire

is shown as a function of the energy (near the Dirac point) and

magnetic flux � from a fully aligned uniform magnetic field. The

results were obtained with a tight-binding version of the effective 3D

Hamiltonian presented in Eq. (8) with the (a) toy model (b) Bi2Se3

(A) parameter set of table I and a = 10 Å. The Dirac point energy

equal to (a) 0 meV (b) 71 meV and the effective half-integer magnetic

fluxes with rescaling ratio (a) α = 1 (b) α = 0.77 are indicated with

pink dashed lines and white dotted lines, respectively.
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FIG. 5. The conductance of a 3D TI nanowire kink, with γK =
π/2 and both legs effectively pierced by a half-integer magnetic flux

quantum is shown as a function of the angle γB of the applied magnetic

field (|B| =
√

2�0/(αA)) and the (equal) energy level of the leads.

The nanowire parameters for (a) and (b) are the same as in Fig. 4

and the same Dirac point energy is indicated with a pink dashed

line.

translational invariance and time-reversal symmetry allows
for elastic backscattering of any surface state, even in ideal
nanowire kinks without disorder. It has already been shown
theoretically that, for 3D TI slabs which are tilted with respect
to each other, angle-dependent reflections will occur at their
interface [59]. In this work, we focus on the nanostructure
regime where well-separated subbands due to confinement
play an important role. As is the case for straight TI nanowires,
the confinement gap can be closed in both legs of the kink
simultaneously by applying an external magnetic field with
the appropriate magnitude under the correct angle γB . This
can be translated to the following condition:

cos γB

2nI + 1
=

cos(γK − γB)

2nO + 1
, (11)

with nI,O integers such that �I,O = (2nI,O + 1)�0/2, where
�I = |B cos γB |A and �O = |B cos(γK − γB)|A are the
piercing magnetic fluxes of the input and output leg, re-
spectively (see Fig. 1). Evidently, unlike for straight TI
nanowires, the appearance of a perpendicular component
of a uniform external magnetic field cannot be prevented
throughout the whole structure, but the gapless Dirac spec-
trum is expected to survive as long as the amplitude of
the perpendicular component stays below Bcrit. ≡ π�0/(2A),
in analogy to the perturbative result based on the 2D
Rashba-Dirac model for a cylindrical nanowire presented in
Sec. III A.

We proceed by considering a kink with fixed angle γK

while allowing the magnetic field to rotate, the setup which
is most easily set up experimentally. When γK = π/2 and
the magnitude of the magnetic field is tuned to

√
2�0/(αA),

the perpendicular component is within limits (when α is
reasonably close to 1) and a gapless subband channel should
appear in both legs of the kink when γB = π/4 + mπ/2 with
m ∈ Z. Hence, for these angles, one could expect transmission
across the kink at energies arbitrarily close to the Dirac
point. Results of conductance simulations for this system are
presented in Fig. 5 and the expected transmission behavior can
indeed be identified.

Interestingly, in an energy window around the Dirac
point that is of the same order as the confinement gap, the

transmission probability appears to be very weak for m odd
and perfect for m even. This implies a strong dependence on
the relative orientation of the magnetic field with respect to the
input and output legs, for which the following general behavior
can be identified. We can distinguish two types of relative
orientations of the magnetic field: an aligned (for the γK = π/2
kink, when 0 < γB < π/2 or π < γB < 3π/2) and a trans-

verse orientation (for the γK = π/2 kink, when π/2 < γB < π

or 3π/2 < γB < 2π ), where aligned (transverse) refers to the
orientation of the magnetic field with respect to the transport
direction from input to output. Gap-closing conditions at the
input and output with aligned (m even) orientation appear
to instigate maximal overlap (perfect transmission) between
the input and output states of the gapless helical subband,
while the transverse orientation instigates minimal overlap
(close to zero transmission). This behavior appears to hold
for kinks with arbitrary angles, both for the toy model and
the Bi2Se3 parameter set. Note that a straight wire cannot
have gap-closing conditions with a transverse magnetic field
orientation.

For the Bi2Se3 kink, the electron-hole asymmetry becomes
noticeable in the conductance near the Dirac point, unlike for
a straight nanowire. The gap closes asymmetrically and the
closing point is shifted about 15 meV in energy as compared
to the Dirac point of the straight wire with an aligned magnetic
field. A gap persists at the gap-closing angles, implying
that the symmetric Dirac velocity renormalization, as derived
perturbatively above for perpendicular magnetic fields, is not
valid for an electron-hole asymmetric and/or anisotropic 3D TI
Hamiltonian. However, this gap is only a couple of meV, being
much smaller than the confinement gap, and does not prevent
a clear perfect transmission signature from showing close to
(mostly below) the (shifted) Dirac point in case of a parallel
magnetic field orientation.

C. Y-junction

In this section, a 3D TI Y-junction geometry [see Fig. 1(b)]
is considered, with three nanowire legs having identical cross
sections. Led by the magnetoconductance behavior for kinks
in the previous section, we can already expect that a properly
tuned and oriented external magnetic field should also be able
to realize (nearly) gapless perfect transmission between any
selection of the three legs of the Y-junction. A T-junction, for
example, would not offer the same flexibility, as two of the
three legs always align identically with the applied magnetic
field, as is the case for a straight nanowire.

The results for conductance simulations of a Y-junction are
shown in Fig. 6, with an external magnetic field having an
amplitude of 2�0/(αA) or 2�0/(

√
3αA). These amplitudes

lead to simultaneous gap-closing conditions in two of the three
legs with transverse or aligned orientation of the magnetic
field (the third leg lying parallel or perpendicular to it),
respectively. Note that both orientations require a different
amplitude of the magnetic field, unlike for the right-angle kink.
Both amplitudes are within limits for the perpendicular com-
ponent however, such that the phenomenology of the gapless
helical subband should survive. From the transport simulation
results, different conductance regimes can be clearly identified
near the Dirac point for both the toy model and the Bi2Se3
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FIG. 6. (a), (c), (e). (g) The conductance between the different legs of a 3D TI Y-junction and (b), (d), (f), (g) the splitting ratio for the

current between the left and right output legs are shown as a function of energy and the angle γB of the magnetic field, with its amplitude equal

to (a)–(b), (e)–(f) |B| = 2�0/(
√

3αA) (c)–(d),(g)–(h) |B| = 2�0/(αA). The (a)–(d) toy model (e)–(h) Bi2Se3 (A) parameter set is considered,

with the remaining parameters identical to those considered in Fig. 4. The Dirac point energy of the corresponding straight TI nanowire is

indicated with a pink dashed line. The angle of π/3 between the z axis and the two output channels was approximated by arctan(3/5) in the

tight-binding simulations for sufficient lattice commensurability.

Y-junction: a fully gapped regime, a reflection-dominated
regime, and left- and/or right-transmitting regimes. The am-
plitude of 2�0/(

√
3αA) leads to gap-closing conditions in

two of the three legs. These conditions coincide with an
aligned orientation of the magnetic field. Unlike for the kink,
however, this does not lead to a much better transmission
when compared to the transverse orientation. The transverse
orientation exhibits a strong directionality of the current,
however. The transmitted current can be perfectly steered to
one of the two output legs, as can be seen in the splitting
ratio.

Similar to the results of the right-angle kink, the main
difference between the toy model and the Bi2Se3 simulations is
the particle-hole asymmetry in the conductance signature and
an upward shift in energy of about 15 meV for the gap closing
with respect to the straight nanowire Dirac point energy. In
addition, the perpendicular component of the magnetic field
induces a Mexican-hat shape for the subband just above the
Dirac point (see Fig. 7), leading to a small energy window
in which the total conductance is doubled. For the transverse
orientation, the top of the lower subband shifts above the
bottom of the Mexican-hat-shaped upper subband, such that
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(a) (b)

FIG. 7. The surface state spectrum of a half-integer flux quantum-

pierced 3D TI nanowire with different values for the perpendicular

component of the magnetic field, considering (a) the isotropic and

electron-hole symmetric toy model and (b) the anisotropic and

electron-hole asymmetric Bi2Se3 (A) parameter set of Table I and a

10 × 10 nm2 cross section. (b) A small gap opens up and a Mexican-

hat-shaped subband develops when the perpendicular component

increases.

the minigap, otherwise appearing for Bi2Se3 at the gap-closing
condition, disappears.

V. CONCLUSIONS AND OUTLOOK

Based on an analysis of the 2D surface Rashba-Dirac model
and tight-binding simulations of an effective 3D model, we
have studied the magnetotransport properties of patterned
3D TI nanostructures; in particular, a right-angle kink and
a Y-junction made of rectangular nanowires. A perturbative
treatment for the 2D Rashba-Dirac model shows that the mag-
netic flux-driven gap closings and their resulting conductance
signatures survive as long as the perpendicular component
of the magnetic field, which is unavoidable for this type of
structure, stays below a critical value. This result is confirmed
with an effective 3D model, which also accounts for the impact
of the surface state thickness, the cross sectional shape of
the nanowire, and anisotropy, and/or electron-hole asymmetry
of the band structure. Compared to effective surface models,
the surface state thickness induces a rescaling of the effective
piercing magnetic flux, which in turn governs the magnetic
field that is required to induce gapless helical subbands.

We demonstrated that, while backscattering is, in principle,
allowed in the presence of a perpendicular magnetic field com-
ponent, perfect (nearly) gapless transmission can be realized
near the Dirac point between a certain input and output leg of a
kink by applying an external magnetic field with appropriately
tuned magnitude and orientation. Apart from piercing the input
and output channels with a half-integer magnetic flux quantum
to close the confinement gap, an appropriate alignment of the
magnetic field is required for maximal overlap of the input
and output states and perfect transmission. This is realized
by a magnetic field with an aligned (rather than a transverse)
orientation with respect to the transport direction, something
which is automatically guaranteed for straight nanowires.

The difference in magnetoconductance between an aligned
and transverse orientation of the magnetic field depends
crucially on the spin-momentum locking properties (helicity)
of the topological surface states. Spin-momentum locking
implies that a certain change of the direction of momentum
should be accompanied by the same change of the direction
of spin, something which is optimally furnished by an aligned

O

I

O

I

I

OL OR

I

OL OR

(a) (b)

(c) (d)

FIG. 8. (a), (b) A right-angle kink with gap-closing conditions

in the input and output legs is depicted with (a) an aligned and

(b) a transverse orientation of the external magnetic field, always

making an angle of 45 degrees with the transport direction. In case

of an aligned (transverse) orientation, the transmission of the gapless

helical subband near the Dirac point is perfect (almost zero). As the

magnitude of the parallel and perpendicular magnetic component is

the same for both orientations, a difference in magnetoconductance

can only be attributed to the topological spin-momentum locked

surface states. (c), (d) A Y-junction with gap-closing conditions in the

input and (c) left or (d) right output leg is depicted with a transverse

orientation of the external magnetic field. This leads to a strong gapless

transmission signature near the Dirac point, which can be perfectly

steered to one of the two output legs.

orientation of the external magnetic field. For trivial surface or
bulk states, there is no such requirement and a dependence on
the alignment of the magnetic field is therefore absent. Hence,
comparing the magnetoconductance of a 3D TI nanostructure
with aligned versus transverse orientation of the external mag-
netic field offers a new direct experimental probe to identify
and characterize magnetotransport of these topological surface
states, while the transport is polluted by trivial surface or bulk
states. For a right-angle kink, the only change that is required
in the system to compare aligned and transverse orientations of
the magnetic field at the gap-closing condition is a 90-degree
rotation of the sample with respect to the external magnetic
field (see Fig. 8). As a function of the in-plane angle of
the magnetic field, the simulation results show an indicative
π -periodic magnetoconductance signature, rather than a trivial
π/2-periodic profile.

For a Y-junction, we demonstrated that the transport near the
Dirac point can be perfectly steered to either of the two output
legs when the magnetic field realizes gap-closing conditions in
two of the three legs with a transverse orientation of the mag-
netic field (see Fig. 8). A comparison between the aligned and
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transverse orientation is less straightforward, as the amplitude
of the magnetic field also needs to be changed. This could also
affect the behavior of the trivial bulk and surface states, which
might hamper the extraction of the topological surface state
current from experimental conductance measurements.

3D TI nanostructures such as kinks and Y-junctions provide
a new way to explore the (magneto)transport properties of 3D
TI surface states and we have presented a fabrication method
in detail to realize these structures experimentally and perform
quantum transport measurements. This could also lead to new
possibilities for applications. The 3D TI Y-junction, for exam-
ple, has already been proposed by Cook et al. in combination
with a rotating magnetic field and proximity-induced s-wave
superconductivity to move Majorana bound states between
the different ends of the legs [39]. It would be interesting to
investigate whether these magnetotransport signatures could
be exploited for electrical detection of Majorana bound states
in Y- or T-junction [60,61] configurations with proximity-
induced superconducting regions, which can be scaled up
to networks in a straightforward manner, allowing for fault-
tolerant computation schemes [62–65]. These considerations
and an analysis of the robustness of the results against disorder
will be investigated in future work.
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APPENDIX: LATTICE MODEL

The Hamiltonian of Eq. (8) can be put on a four-
orbital square lattice with lattice constant a (analogously
to the procedure by Rod et al. for the two-orbital BHZ
Hamiltonian for example [66,67]) by making the following
substitutions:

kx,y,z → sin(kx,y,za)/a,

k2
x,y,z → 2[1 − cos(kx,y,za)]/a2.

(A1)

Note that the substitution of the linear terms add artificial
gap closings at kx,y,z = ±π/a, being removed again by the
quadratic terms. Integrating over the reciprocal space yields the
following tight-binding Hamiltonian in real space consisting
of on-site and nearest-neighbor hopping terms:

Ĥ3D
lat.(k) =

∑

i,σ

{(

C+
0 − 2

2C+
⊥ + C+

z

a2

)

e
†
i σ ei σ +

(

C−
0 − 2

2C−
⊥ + C−

z

a2

)

h
†
i σhi σ

}

+
∑

i,σ

{

C+
⊥

a2
(e

†
i+x̂ σ ei σ + e

†
i+ŷ σ ei σ ) +

C−
⊥

a2
(h

†
i+x̂ σhi σ + h

†
i+ŷ σhi σ ) +

C+
z

a2
e
†
i+ẑ σ ei σ +

C−
z

a2
h
†
i+ẑ σhi σ + h.c.

}

+
∑

i

{

A⊥

2a
(−ie

†
i+x̂ ↑hi ↓ + ie

†
i−x̂ ↑hi ↓ − ie

†
i+x̂ ↓hi ↑ + ie

†
i−x̂ ↓hi ↑ − e

†
i+ŷ ↑hi ↓ + e

†
i−ŷ ↑hi ↓ + e

†
i+ŷ ↓hi ↑ − e

†
i−ŷ ↓hi ↑)

+
Az

2a
(−ie

†
i+ẑ ↑hi ↑ + ie

†
i−ẑ ↑hi ↑ + ie

†
i+ẑ ↓hi ↓ − ie

†
i−ẑ ↓hi ↓) + H.c.

}

, C±
0,⊥,z ≡ C0,⊥,z ± M0,⊥,z, (A2)

with e† and h† creation operators for the E and H orbitals, respectively, i a summation index for the square lattice sites, and σ

summing over the spin degree of freedom. This Hamiltonian can directly be implemented in Kwant. The resulting band structure
approaches that of the continuous model in the limit a → 0 and forms a good approximation when |k| < a−1.
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