000850788 001__ 850788
000850788 005__ 20230426083200.0
000850788 0247_ $$2doi$$a10.1103/PhysRevB.98.024419
000850788 0247_ $$2ISSN$$a0163-1829
000850788 0247_ $$2ISSN$$a0556-2805
000850788 0247_ $$2ISSN$$a1094-1622
000850788 0247_ $$2ISSN$$a1095-3795
000850788 0247_ $$2ISSN$$a1098-0121
000850788 0247_ $$2ISSN$$a1550-235X
000850788 0247_ $$2ISSN$$a2469-9950
000850788 0247_ $$2ISSN$$a2469-9969
000850788 0247_ $$2Handle$$a2128/19665
000850788 0247_ $$2WOS$$aWOS:000439411200004
000850788 0247_ $$2altmetric$$aaltmetric:29033597
000850788 037__ $$aFZJ-2018-04562
000850788 082__ $$a530
000850788 1001_ $$0P:(DE-Juel1)130643$$aFreimuth, Frank$$b0$$eCorresponding author$$ufzj
000850788 245__ $$aSpin-orbit torques and tunable Dzyaloshinskii-Moriya interaction in Co/Cu/Co trilayers
000850788 260__ $$aWoodbury, NY$$bInst.$$c2018
000850788 3367_ $$2DRIVER$$aarticle
000850788 3367_ $$2DataCite$$aOutput Types/Journal article
000850788 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552413837_13870
000850788 3367_ $$2BibTeX$$aARTICLE
000850788 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850788 3367_ $$00$$2EndNote$$aJournal Article
000850788 520__ $$aWe study the spin-orbit torques (SOTs) in Co/Cu/Co magnetic trilayers based on first-principles density-functional theory calculations in the case where the applied electric field lies in-plane, i.e., parallel to the interfaces. We assume that the bottom Co layer has a fixed in-plane magnetization, while the top Co layer can be switched. We find that the SOT on the top ferromagnet can be controlled by the bottom ferromagnet because of the nonlocal character of the SOT in this system. As a consequence the SOT is anisotropic, i.e., its magnitude varies with the direction of the applied electric field. We show that the Dzyaloshinskii-Moriya interaction (DMI) in the top layer is anisotropic as well, i.e., the spin-spiral wavelength of spin spirals in the top layer depends on their in-plane propagation direction. This effect suggests that DMI can be tuned easily in magnetic trilayers via the magnetization direction of the bottom layer. In order to understand the influence of the bottom ferromagnet on the SOTs and the DMI of the top ferromagnet, we study these effects in Co/Cu magnetic bilayers for comparison. We find the SOTs and the DMI to be surprisingly large despite the small spin-orbit interaction of Cu.
000850788 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000850788 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000850788 536__ $$0G:(DE-Juel1)jiff40_20090701$$aTopological transport in real materials from ab initio (jiff40_20090701)$$cjiff40_20090701$$fTopological transport in real materials from ab initio$$x2
000850788 542__ $$2Crossref$$i2018-07-23$$uhttps://link.aps.org/licenses/aps-default-license
000850788 588__ $$aDataset connected to CrossRef
000850788 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b1
000850788 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b2
000850788 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.98.024419$$bAmerican Physical Society (APS)$$d2018-07-23$$n2$$p024419$$tPhysical Review B$$v98$$x2469-9950$$y2018
000850788 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.98.024419$$gVol. 98, no. 2, p. 024419$$n2$$p024419$$tPhysical review / B$$v98$$x2469-9950$$y2018
000850788 8564_ $$uhttps://juser.fz-juelich.de/record/850788/files/PhysRevB.98.024419.pdf$$yOpenAccess
000850788 8564_ $$uhttps://juser.fz-juelich.de/record/850788/files/PhysRevB.98.024419.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000850788 909CO $$ooai:juser.fz-juelich.de:850788$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000850788 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130643$$aForschungszentrum Jülich$$b0$$kFZJ
000850788 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b1$$kFZJ
000850788 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b2$$kFZJ
000850788 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000850788 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000850788 9141_ $$y2018
000850788 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850788 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000850788 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000850788 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2015
000850788 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850788 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850788 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850788 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000850788 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000850788 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000850788 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000850788 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000850788 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850788 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000850788 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000850788 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000850788 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
000850788 980__ $$ajournal
000850788 980__ $$aVDB
000850788 980__ $$aI:(DE-Juel1)IAS-1-20090406
000850788 980__ $$aI:(DE-Juel1)PGI-1-20110106
000850788 980__ $$aI:(DE-82)080012_20140620
000850788 980__ $$aI:(DE-82)080009_20140620
000850788 980__ $$aUNRESTRICTED
000850788 9801_ $$aFullTexts
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1218197
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4753947
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.174423
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2013.145
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.113.196602
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat4566
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.165424
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevApplied.3.044001
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.014416
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.117201
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.214417
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41563-018-0041-5
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-017-00967-w
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.94.104419
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.94.104420
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.064415
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.116.196602
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.216601
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.094407
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/26/10/104202
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms9190
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.96.054403
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.84.3149
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.024404
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2835071
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.93.224420
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.214409
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/28/31/316001
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3865
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.19.1706
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.69.024415
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.84.1419
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.035120
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2007.11.016
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.037204
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.076402
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.012405
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.054401
000850788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature13534