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Introduction Methods

Regional connectivity-based parcellation (CBP) aims Sample: rs-fMRI data of 408 healthy unrelated subjects from the Human Connectome Project [3]
to find biologically meaningful subregions by clustering

voxels of a region of interest (ROI). Connectivity: Correlations between time-series of each ROI voxel and all brain gray-matter voxels

Deviant Detection: Identify nearest-neighbor subjects based on Euclidean distance (Fig. 2). Three
detection thresholds defined as (1) a conservative k-means (k = 2) cluster-defined threshold (Fig. 4),
(2) a standard 1.69 (.95 left tail area on standard normal distribution), and (3) a liberal 2.5 on Z-scored
distances

Using a large resting-state fMRI (rs-fMRI) sample, we
show that deviant connectivity profiles substantially
Influence group-based clustering results on the well
researched [1] right (R) insula ROI (Fig. 1) as defined

by the Harvard-Oxford Atlas [2]. H Euclidean Distance d between U and V 1 | d”= Z-score transformation of a
— In du d;m vector of minimum values for
|~ . D= d == d each row of D
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for each combination of subjects (N = 408)
subject by subject matrix

Clustering: subject-wise k-means (k = 2 to 5) on each
connectivity matrix; hierarchical clustering with average
linkage and Hamming distance for group clustering

A = Adjusted Rand Index between pairs of clusterings for
each combination of subjects (N = 408)

Analysis: Adjusted rand index (ARI) between all subject = O o .
K-means cluster results retaining highest values per A= ﬂ_ll ﬂ;ﬂ a=2Z\max|A)|
subject (Fig. 3). Principal component analysis on : :
connectivity matrices noting principal component Qy 4 0 O

R Insula, Superior View R Insula, Right Sagittal View numbers (PCn) retaining 95% variance

(used in Fig. 6)
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threshold value for group clustering. Green
circles represent outlier subjects as
defined by this conservative threshold. o
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3% Thus, outlier time-series seem to have K=3
: ower intrinsic dimensionality.
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S and 5 accordingly. Clusterings ordered by k clusters (vertical) and outlier threshold (horizontal).
= | Overlap and ARI values show similarity of clustering to clustering without
5 Results ~ suggest  outliers  cluster  gytlier-removal. This figure was visualized with the BrainNet Viewer [4].
s o differently, thus including them into a | |
2 group-level  consensus  might  be Differences can be found between these group-level parcellations. For
5 detrimental. Instance, comparing the liberal 2.5 threshold-removed group parcellation for
. k = 3 with a group parcellation without outlier-removal (see highlight) shows
Z-scored Euclidean Distance Only an 81% Overlap.

Discussion

The differences In clusterings highlight the influence of outliers. A negative correlation between PC_and distance d? implies low intrinsic dimensionality comes paired with

connectivity that iIs more distant from the sample (Fig. 5). While assessment of group-level parcellations reveals that clustering results were only relatively stable across
thresholds for k = 2 (Fig. 6), ample evidence suggests more than 2 clusters in the R-insula [5,6,7]. Thus, differences due to outliers in k > 2 clusterings are problematic. As
linkage algorithms in hierarchical clustering as well as k-means clustering are sensitive to outliers [8], it Is Important to remove them by using a proper identification
threshold. In the future we will focus on automatic identification of parameters that lead to biologically meaningful parcellations.
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