001     850823
005     20210129234638.0
024 7 _ |a 10.1002/admt.201800081
|2 doi
024 7 _ |a 2128/19760
|2 Handle
024 7 _ |a WOS:000438336800015
|2 WOS
024 7 _ |a altmetric:43615782
|2 altmetric
037 _ _ |a FZJ-2018-04594
082 _ _ |a 600
100 1 _ |a Barnsley, Lester
|0 P:(DE-Juel1)172014
|b 0
|e First author
|u fzj
245 _ _ |a A Combined Magnetic-Acoustic Device for Simultaneous, Coaligned Application of Magnetic and Ultrasonic Fields
260 _ _ |a Weinheim
|c 2018
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1553870292_28546
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Acoustically‐responsive microbubbles have been widely researched as agents for both diagnostic and therapeutic applications of ultrasound. There has also been considerable interest in magnetically‐functionalised microbubbles as multi‐modality imaging agents and carriers for targeted drug delivery. In this paper, we present a design for an integrated device capable of generating co‐aligned magnetic and acoustic fields in order to accumulate microbubbles at a specific location and to activate them acoustically. For this proof‐of‐concept study, the device was designed to concentrate microbubbles at a distance of 10 mm from the probe's surface, commensurate with relevant tissue depths in preclinical small animal models. Previous studies have indicated that both microbubble concentration and duration of cavitation activity are positively correlated with therapeutic effect. The utility of the device was assessed in vitro tests in a tissue‐mimicking phantom containing a single vessel (1.2 mm diameter). At a peak fluid velocity of 4.2 mm s−1 microbubble accumulation was observed under B‐mode ultrasound imaging and the corresponding cavitation activity was sustained for a period more than 4 times longer than that achieved with an identical acoustic field but in the absence of a magnet. The feasibility of developing a larger scale device for human applications is discussed.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 1
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Medicine
|0 V:(DE-MLZ)SciArea-190
|2 V:(DE-HGF)
|x 0
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 1
650 1 7 |a Instrument and Method Development
|0 V:(DE-MLZ)GC-2002-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Gray, Michael D.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Beguin, Estelle
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Carugo, Dario
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Stride, Eleanor
|0 0000-0003-3371-5929
|b 4
|e Corresponding author
773 _ _ |a 10.1002/admt.201800081
|g Vol. 3, no. 7, p. 1800081 -
|0 PERI:(DE-600)2850995-X
|n 7
|p 1800081 -
|t Advanced materials technologies
|v 3
|y 2018
|x 2365-709X
856 4 _ |u https://juser.fz-juelich.de/record/850823/files/Barnsley_et_al-2018-Advanced_Materials_Technologies.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/850823/files/Pre-print.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/850823/files/Barnsley_et_al-2018-Advanced_Materials_Technologies.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/850823/files/Pre-print.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/850823/files/Pre-print.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/850823/files/Pre-print.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/850823/files/Pre-print.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/850823/files/Pre-print.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:850823
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172014
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 1
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER TECHNOL-US : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k Neutronenstreuung ; JCNS-1
|l Neutronenstreuung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21