000850867 001__ 850867
000850867 005__ 20240712113103.0
000850867 0247_ $$2doi$$a10.1016/j.ssi.2018.01.048
000850867 0247_ $$2ISSN$$a0167-2738
000850867 0247_ $$2ISSN$$a1872-7689
000850867 0247_ $$2WOS$$aWOS:000432505300003
000850867 037__ $$aFZJ-2018-04618
000850867 082__ $$a530
000850867 1001_ $$0P:(DE-Juel1)165865$$aNaqash, Sahir$$b0$$eCorresponding author$$ufzj
000850867 245__ $$aSynthesis and characterization of equimolar Al/Y-substituted NASICON solid solution Na1+2x+yAlxYxZr2−2xSiyP3−yO12
000850867 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000850867 3367_ $$2DRIVER$$aarticle
000850867 3367_ $$2DataCite$$aOutput Types/Journal article
000850867 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1543477831_22945
000850867 3367_ $$2BibTeX$$aARTICLE
000850867 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850867 3367_ $$00$$2EndNote$$aJournal Article
000850867 520__ $$aAn equimolar substitution of Zr4+ with Al3+ and Y3+ was chosen to prepare two NASICON series, Na1+2xAlxYxZr2−2x(PO4)3 and Na3+2xAlxYxZr2−2x(SiO4)2(PO4)3, which were compared with previously investigated Sc3+-substituted NASICON materials. The common feature of all series is a mean effective ionic radius of the transition metal cations of 0.718 Å < reff < 0.745 Å. Na1+2xAlxYxZr2−2x(PO4)3 (0 ≤ x ≤ 0.3) has a rhombohedral crystal structure, whereas Na3+2xAlxYxZr2−2x(SiO4)2(PO4)3 changes the modification from a monoclinic (0 ≤ x ≤ 0.1) to a rhombohedral structure (x > 0.1). The average linear coefficient of thermal expansion of Na3+2xAlxYxZr2−2x(SiO4)2(PO4)3, obtained from high temperature X-ray diffraction, increased when x was raised from 4.1 · 10−6 K−1 to 8.1 · 10−6 K−1. The ionic conductivity of Na1+2xAlxYxZr2−2x(PO4)3 compositions was one to two orders of magnitude lower than the Na3+2xAlxYxZr2−2x(SiO4)2(PO4)3 series. For the latter series, conductivity decreased when the Al/Y substitution was increased, despite the number of charge carriers (Na+) increasing. Conductivity was 0.8 mS cm−1 when x = 0, and 0.08 mS cm−1 when x = 0.3. This demonstrates that the transport properties in NASICON materials are not only affected by the steric interactions (i.e. reff, mean width of conduction path) but also the electrostatic interactions (charge, bond strength, atomic orbitals) of the substituting cations.
000850867 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000850867 588__ $$aDataset connected to CrossRef
000850867 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b1
000850867 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b2$$ufzj
000850867 773__ $$0PERI:(DE-600)1500750-9$$a10.1016/j.ssi.2018.01.048$$gVol. 319, p. 13 - 21$$p13 - 21$$tSolid state ionics$$v319$$x0167-2738$$y2018
000850867 8564_ $$uhttps://juser.fz-juelich.de/record/850867/files/1-s2.0-S0167273817307725-main.pdf$$yRestricted
000850867 8564_ $$uhttps://juser.fz-juelich.de/record/850867/files/1-s2.0-S0167273817307725-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000850867 909CO $$ooai:juser.fz-juelich.de:850867$$pVDB
000850867 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165865$$aForschungszentrum Jülich$$b0$$kFZJ
000850867 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b1$$kFZJ
000850867 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b2$$kFZJ
000850867 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000850867 9141_ $$y2018
000850867 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000850867 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOLID STATE IONICS : 2015
000850867 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850867 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000850867 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000850867 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850867 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850867 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850867 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850867 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000850867 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000850867 920__ $$lyes
000850867 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000850867 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
000850867 980__ $$ajournal
000850867 980__ $$aVDB
000850867 980__ $$aI:(DE-Juel1)IEK-1-20101013
000850867 980__ $$aI:(DE-Juel1)IEK-12-20141217
000850867 980__ $$aUNRESTRICTED
000850867 981__ $$aI:(DE-Juel1)IMD-4-20141217
000850867 981__ $$aI:(DE-Juel1)IMD-2-20101013