000850868 001__ 850868
000850868 005__ 20240712113103.0
000850868 0247_ $$2doi$$a10.1021/acs.chemmater.8b00179
000850868 0247_ $$2ISSN$$a0897-4756
000850868 0247_ $$2ISSN$$a1520-5002
000850868 0247_ $$2Handle$$a2128/20214
000850868 0247_ $$2pmid$$apmid:29606799
000850868 0247_ $$2WOS$$aWOS:000427661500038
000850868 0247_ $$2altmetric$$aaltmetric:38946608
000850868 037__ $$aFZJ-2018-04619
000850868 082__ $$a540
000850868 1001_ $$00000-0002-2074-941X$$aRettenwander, Daniel$$b0$$eCorresponding author
000850868 245__ $$aArrhenius Behavior of the Bulk Na-Ion Conductivity in Na 3 Sc 2 (PO 4 ) 3 Single Crystals Observed by Microcontact Impedance Spectroscopy
000850868 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2018
000850868 3367_ $$2DRIVER$$aarticle
000850868 3367_ $$2DataCite$$aOutput Types/Journal article
000850868 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1543481052_22949
000850868 3367_ $$2BibTeX$$aARTICLE
000850868 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850868 3367_ $$00$$2EndNote$$aJournal Article
000850868 520__ $$aNASICON-based solid electrolytes with exceptionally high Na-ion conductivities are considered to enable future all solid-state Na-ion battery technologies. Despite 40 years of research the interrelation between crystal structure and Na-ion conduction is still controversially discussed and far from being fully understood. In this study, microcontact impedance spectroscopy combined with single crystal X-ray diffraction, and differential scanning calorimetry is applied to tackle the question how bulk Na-ion conductivity σbulk of sub-mm-sized flux grown Na3Sc2(PO4)3 (NSP) single crystals is influenced by supposed phase changes (α, β, and γ phase) discussed in literature. Although we found a smooth structural change at around 140 °C, which we assign to the β → γ phase transition, our conductivity data follow a single Arrhenius law from room temperature (RT) up to 220 °C. Obviously, the structural change, being mainly related to decreasing Na-ion ordering with increasing temperature, does not cause any jumps in Na-ion conductivity or any discontinuities in activation energies Ea. Bulk ion dynamics in NSP have so far rarely been documented; here, under ambient conditions, σbulk turned out to be as high as 3 × 10–4 S cm–1 at RT (Ea, bulk = 0.39 eV) when directly measured with microcontacts for individual small single crystals.
000850868 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000850868 588__ $$aDataset connected to CrossRef
000850868 7001_ $$0P:(DE-HGF)0$$aRedhammer, Günther J.$$b1
000850868 7001_ $$0P:(DE-Juel1)158083$$aGuin, Marie$$b2
000850868 7001_ $$0P:(DE-HGF)0$$aBenisek, Artur$$b3
000850868 7001_ $$0P:(DE-HGF)0$$aKrüger, Hannes$$b4
000850868 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b5$$ufzj
000850868 7001_ $$00000-0001-9706-4892$$aWilkening, Martin$$b6
000850868 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b7$$ufzj
000850868 7001_ $$0P:(DE-HGF)0$$aFleig, Jürgen$$b8
000850868 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.8b00179$$gVol. 30, no. 5, p. 1776 - 1781$$n5$$p1776 - 1781$$tChemistry of materials$$v30$$x1520-5002$$y2018
000850868 8564_ $$uhttps://juser.fz-juelich.de/record/850868/files/cm8b00179.pdf$$yOpenAccess
000850868 8564_ $$uhttps://juser.fz-juelich.de/record/850868/files/cm8b00179.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000850868 909CO $$ooai:juser.fz-juelich.de:850868$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000850868 9101_ $$0I:(DE-HGF)0$$60000-0002-2074-941X$$aTU Graz $$b0
000850868 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b5$$kFZJ
000850868 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b7$$kFZJ
000850868 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000850868 9141_ $$y2018
000850868 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850868 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000850868 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000850868 915__ $$0LIC:(DE-HGF)PublisherOA$$2HGFVOC$$aFree to read
000850868 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2015
000850868 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM MATER : 2015
000850868 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850868 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850868 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850868 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000850868 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000850868 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000850868 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000850868 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000850868 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850868 920__ $$lyes
000850868 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000850868 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
000850868 9801_ $$aFullTexts
000850868 980__ $$ajournal
000850868 980__ $$aVDB
000850868 980__ $$aUNRESTRICTED
000850868 980__ $$aI:(DE-Juel1)IEK-1-20101013
000850868 980__ $$aI:(DE-Juel1)IEK-12-20141217
000850868 981__ $$aI:(DE-Juel1)IMD-4-20141217
000850868 981__ $$aI:(DE-Juel1)IMD-2-20101013