TY  - JOUR
AU  - Rettenwander, Daniel
AU  - Redhammer, Günther J.
AU  - Guin, Marie
AU  - Benisek, Artur
AU  - Krüger, Hannes
AU  - Guillon, Olivier
AU  - Wilkening, Martin
AU  - Tietz, Frank
AU  - Fleig, Jürgen
TI  - Arrhenius Behavior of the Bulk Na-Ion Conductivity in Na 3 Sc 2 (PO 4 ) 3 Single Crystals Observed by Microcontact Impedance Spectroscopy
JO  - Chemistry of materials
VL  - 30
IS  - 5
SN  - 1520-5002
CY  - Washington, DC
PB  - American Chemical Society
M1  - FZJ-2018-04619
SP  - 1776 - 1781
PY  - 2018
AB  - NASICON-based solid electrolytes with exceptionally high Na-ion conductivities are considered to enable future all solid-state Na-ion battery technologies. Despite 40 years of research the interrelation between crystal structure and Na-ion conduction is still controversially discussed and far from being fully understood. In this study, microcontact impedance spectroscopy combined with single crystal X-ray diffraction, and differential scanning calorimetry is applied to tackle the question how bulk Na-ion conductivity σbulk of sub-mm-sized flux grown Na3Sc2(PO4)3 (NSP) single crystals is influenced by supposed phase changes (α, β, and γ phase) discussed in literature. Although we found a smooth structural change at around 140 °C, which we assign to the β → γ phase transition, our conductivity data follow a single Arrhenius law from room temperature (RT) up to 220 °C. Obviously, the structural change, being mainly related to decreasing Na-ion ordering with increasing temperature, does not cause any jumps in Na-ion conductivity or any discontinuities in activation energies Ea. Bulk ion dynamics in NSP have so far rarely been documented; here, under ambient conditions, σbulk turned out to be as high as 3 × 10–4 S cm–1 at RT (Ea, bulk = 0.39 eV) when directly measured with microcontacts for individual small single crystals.
LB  - PUB:(DE-HGF)16
C6  - pmid:29606799
UR  - <Go to ISI:>//WOS:000427661500038
DO  - DOI:10.1021/acs.chemmater.8b00179
UR  - https://juser.fz-juelich.de/record/850868
ER  -