000850869 001__ 850869
000850869 005__ 20240711101509.0
000850869 0247_ $$2doi$$a10.1016/j.energy.2018.05.059
000850869 0247_ $$2ISSN$$a0360-5442
000850869 0247_ $$2ISSN$$a1873-6785
000850869 0247_ $$2WOS$$aWOS:000445440500095
000850869 037__ $$aFZJ-2018-04620
000850869 082__ $$a600
000850869 1001_ $$0P:(DE-Juel1)165160$$aWelder, Lara$$b0$$eCorresponding author$$ufzj
000850869 245__ $$aSpatio-temporal optimization of a future energy system for power-to-hydrogen applications in Germany
000850869 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000850869 3367_ $$2DRIVER$$aarticle
000850869 3367_ $$2DataCite$$aOutput Types/Journal article
000850869 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604409880_754
000850869 3367_ $$2BibTeX$$aARTICLE
000850869 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850869 3367_ $$00$$2EndNote$$aJournal Article
000850869 520__ $$aAchieving greenhouse gas reduction targets requires an increased share of renewable energy sources in todays energy systems. The spatial and temporal mismatch between electricity supply and consumers demand arising from fluctuating renewable electricity generation can be overcome by energy transport and storage. Here, one option is the Power-to-Gas concept. With this, hydrogen is produced by water electrolysis and can then be flexibly distributed and stored throughout the energy system. In this study, an optimization model is proposed that represents such an energy system as multiple interconnected nodes and which considers the systems time-dependent characteristics in terms of the integration of typical days and their chronological order. This methodology is applied to determine the cost-optimal design and operation of future energy systems for Power-to-Gas scenarios in Germany. In these scenarios, hydrogen is supplied to mobility and industry. Onshore wind turbines and hydrogen pipelines and underground storage facilities are considered for generation, transmission and storage. For all scenarios, a hydrogen cost below the current hydrogen retail price of 9.5 Euro/kg at German fueling stations is obtained. Additionally, the value of hydrogen storage in salt caverns is investigated by prohibiting their construction during optimization, which results in a cost increase of 1.5 Euro/kg.
000850869 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000850869 536__ $$0G:(DE-HGF)ES2050$$aES2050 - Energie Sytem 2050 (ES2050)$$cES2050$$x1
000850869 588__ $$aDataset connected to CrossRef
000850869 7001_ $$0P:(DE-Juel1)169156$$aRyberg, Severin David$$b1$$ufzj
000850869 7001_ $$0P:(DE-Juel1)168451$$aKotzur, Leander$$b2$$ufzj
000850869 7001_ $$0P:(DE-Juel1)129852$$aGrube, Thomas$$b3$$ufzj
000850869 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b4
000850869 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b5$$ufzj
000850869 773__ $$0PERI:(DE-600)2019804-8$$a10.1016/j.energy.2018.05.059$$gVol. 158, p. 1130 - 1149$$p1130 - 1149$$tEnergy$$v158$$x0360-5442$$y2018
000850869 8564_ $$uhttps://juser.fz-juelich.de/record/850869/files/1-s2.0-S036054421830879X-main.pdf$$yRestricted
000850869 8564_ $$uhttps://juser.fz-juelich.de/record/850869/files/1-s2.0-S036054421830879X-main.gif?subformat=icon$$xicon$$yRestricted
000850869 8564_ $$uhttps://juser.fz-juelich.de/record/850869/files/1-s2.0-S036054421830879X-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000850869 8564_ $$uhttps://juser.fz-juelich.de/record/850869/files/1-s2.0-S036054421830879X-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000850869 8564_ $$uhttps://juser.fz-juelich.de/record/850869/files/1-s2.0-S036054421830879X-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000850869 8564_ $$uhttps://juser.fz-juelich.de/record/850869/files/1-s2.0-S036054421830879X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000850869 909CO $$ooai:juser.fz-juelich.de:850869$$pVDB
000850869 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165160$$aForschungszentrum Jülich$$b0$$kFZJ
000850869 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169156$$aForschungszentrum Jülich$$b1$$kFZJ
000850869 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168451$$aForschungszentrum Jülich$$b2$$kFZJ
000850869 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129852$$aForschungszentrum Jülich$$b3$$kFZJ
000850869 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b4$$kFZJ
000850869 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b5$$kFZJ
000850869 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b5$$kRWTH
000850869 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000850869 9141_ $$y2018
000850869 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000850869 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000850869 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY : 2015
000850869 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850869 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000850869 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000850869 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850869 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850869 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850869 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850869 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000850869 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000850869 920__ $$lyes
000850869 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000850869 980__ $$ajournal
000850869 980__ $$aVDB
000850869 980__ $$aI:(DE-Juel1)IEK-3-20101013
000850869 980__ $$aUNRESTRICTED
000850869 981__ $$aI:(DE-Juel1)ICE-2-20101013