000850871 001__ 850871
000850871 005__ 20240712113103.0
000850871 0247_ $$2doi$$a10.1007/s11581-017-2276-6
000850871 0247_ $$2ISSN$$a0947-7047
000850871 0247_ $$2ISSN$$a1862-0760
000850871 0247_ $$2WOS$$aWOS:000428070800005
000850871 037__ $$aFZJ-2018-04622
000850871 082__ $$a530
000850871 1001_ $$0P:(DE-Juel1)169592$$aGellert, Michael$$b0
000850871 245__ $$aCompatibility study of oxide and olivine cathode materials with lithium aluminum titanium phosphate
000850871 260__ $$aBerlin$$bSpringer$$c2018
000850871 3367_ $$2DRIVER$$aarticle
000850871 3367_ $$2DataCite$$aOutput Types/Journal article
000850871 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1537448803_5115
000850871 3367_ $$2BibTeX$$aARTICLE
000850871 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850871 3367_ $$00$$2EndNote$$aJournal Article
000850871 520__ $$aThe compatibility of the solid electrolyte Li1.5Al0.5Ti1.5(PO4)3 (LATP) with the cathode materials LiCoO2, LiMn2O4, LiCoPO4, LiFePO4, and LiMn0.5Fe0.5PO4 was investigated in a co-sintering study. Mixtures of LATP and the different cathode materials were sintered at various temperatures and subsequently analyzed by thermal analysis, X-ray diffraction, and electron microscopy. Oxide cathode materials display a rapid decomposition reaction with the electrolyte material even at temperatures as low as 500 °C, while olivine cathode materials are much more stable. The oxide cathode materials tend to decompose to lithium-free compounds, leaving lithium to form Li3PO4 and other metal phosphates. In contrast, the olivine cathode materials decompose to mixed phosphates, which can, in part, still be electrochemically active. Among the olivine cathode materials, LiFePO4 demonstrated the most promising results. No secondary phases were detected by X-ray diffraction after sintering a LATP/LiFePO4 mixture at temperatures as high as 700 °C. Electron microscopy revealed a small secondary phase probably consisting of Li2FeTi(PO4)3, which is ionically conductive and should be electrochemically active as well.
000850871 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000850871 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000850871 588__ $$aDataset connected to CrossRef
000850871 7001_ $$0P:(DE-HGF)0$$aDashjav, Enkhetsetseg$$b1$$eCorresponding author
000850871 7001_ $$0P:(DE-Juel1)145209$$aGrüner, Daniel$$b2$$ufzj
000850871 7001_ $$0P:(DE-Juel1)129628$$aMa, Qianli$$b3$$ufzj
000850871 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b4$$ufzj
000850871 773__ $$0PERI:(DE-600)2226746-3$$a10.1007/s11581-017-2276-6$$gVol. 24, no. 4, p. 1001 - 1006$$n4$$p1001 - 1006$$tIonics$$v24$$x1862-0760$$y2018
000850871 8564_ $$uhttps://juser.fz-juelich.de/record/850871/files/Gellert2018_Article_CompatibilityStudyOfOxideAndOl.pdf$$yRestricted
000850871 8564_ $$uhttps://juser.fz-juelich.de/record/850871/files/Gellert2018_Article_CompatibilityStudyOfOxideAndOl.pdf?subformat=pdfa$$xpdfa$$yRestricted
000850871 909CO $$ooai:juser.fz-juelich.de:850871$$pVDB
000850871 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
000850871 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145209$$aForschungszentrum Jülich$$b2$$kFZJ
000850871 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129628$$aForschungszentrum Jülich$$b3$$kFZJ
000850871 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b4$$kFZJ
000850871 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000850871 9141_ $$y2018
000850871 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000850871 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIONICS : 2015
000850871 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850871 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850871 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850871 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850871 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000850871 920__ $$lyes
000850871 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000850871 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
000850871 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x2
000850871 980__ $$ajournal
000850871 980__ $$aVDB
000850871 980__ $$aI:(DE-Juel1)IEK-1-20101013
000850871 980__ $$aI:(DE-Juel1)IEK-12-20141217
000850871 980__ $$aI:(DE-Juel1)IEK-2-20101013
000850871 980__ $$aUNRESTRICTED
000850871 981__ $$aI:(DE-Juel1)IMD-1-20101013
000850871 981__ $$aI:(DE-Juel1)IMD-4-20141217
000850871 981__ $$aI:(DE-Juel1)IMD-2-20101013