001     850875
005     20240712112825.0
024 7 _ |a 10.1021/acsaem.8b00456
|2 doi
024 7 _ |a WOS:000458705800051
|2 WOS
037 _ _ |a FZJ-2018-04626
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Ma, Qianli
|0 P:(DE-Juel1)129628
|b 0
|e Corresponding author
245 _ _ |a Characterization and Optimization of La0.97Ni0.5Co0.5O3−δ -Based Air-Electrodes for Solid Oxide Cells
260 _ _ |a Washington, DC
|c 2018
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1542791715_6274
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a On the basis of previous studies of perovskites in the quasi-ternary system LaFeO3–LaCoO3–LaNiO3, LaNi0.5Co0.5O3 (LNC) is chosen as the most promising air-electrode material in the series for solid oxide cells (SOCs). In the present study, A-site deficiency of LNC is discussed and La0.97Ni0.5Co0.5O3 (LNC97) is selected as the optimal composition. Compatibility of LNC97 with 8 mol % Y2O3 stabilized ZrO2 (8YSZ) is analyzed and compared with that of the state-of-the-art air-electrode La0.58Sr0.4Co0.2Fe0.8O3−δ (LSCF) and 8YSZ. Targeting to the requirements of high-performance SOC air-electrodes (high electronic and ionic conductivity and high catalytic activity for the oxygen reduction reaction), LNC97-based air-electrodes are tailored, characterized and optimized by symmetric-cell tests. Principles of air-electrode design for SOCs are revealed accordingly. Long-term measurement of the symmetric cells over a period of 1000 h is performed and possible degradation mechanisms are discussed. Full cells based on optimized LNC97 air-electrodes are also tested. Lower reactivity with 8YSZ in comparison to LSCF and a similar performance render LNC97 a very competitive candidate to substitute LSCF as air-electrode material of choice for SOCs.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Balaguer, Maria
|0 P:(DE-Juel1)161336
|b 1
700 1 _ |a Pérez-Coll, Domingo
|0 P:(DE-HGF)0
|b 2
700 1 _ |a de Haart, L.G.J.
|0 P:(DE-Juel1)129952
|b 3
|u fzj
700 1 _ |a Serra, Jose M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mather, Glenn C.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Tietz, Frank
|0 P:(DE-Juel1)129667
|b 6
700 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 7
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 8
773 _ _ |a 10.1021/acsaem.8b00456
|g Vol. 1, no. 6, p. 2784 - 2792
|0 PERI:(DE-600)2916551-9
|n 6
|p 2784 - 2792
|t ACS applied energy materials
|v 1
|y 2018
|x 2574-0962
856 4 _ |u https://juser.fz-juelich.de/record/850875/files/acsaem.8b00456.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/850875/files/acsaem.8b00456.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:850875
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129628
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129952
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129667
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129636
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21