000850877 001__ 850877
000850877 005__ 20240712113103.0
000850877 0247_ $$2doi$$a10.1016/j.cplett.2018.04.037
000850877 0247_ $$2ISSN$$a0009-2614
000850877 0247_ $$2ISSN$$a1873-4448
000850877 0247_ $$2WOS$$aWOS:000432563600022
000850877 037__ $$aFZJ-2018-04628
000850877 082__ $$a540
000850877 1001_ $$0P:(DE-HGF)0$$aLunghammer, S.$$b0
000850877 245__ $$aBulk and grain-boundary ionic conductivity in sodium zirconophosphosilicate Na 3 Zr 2 (SiO 4 ) 2 PO 4 (NASICON)
000850877 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2018
000850877 3367_ $$2DRIVER$$aarticle
000850877 3367_ $$2DataCite$$aOutput Types/Journal article
000850877 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1537448432_11817
000850877 3367_ $$2BibTeX$$aARTICLE
000850877 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850877 3367_ $$00$$2EndNote$$aJournal Article
000850877 520__ $$aSodium zirconophosphosilicates currently experience a kind of renaissance as promising ceramic electrolytes for safe all-solid-state Na batteries. Such energy storage systems are an emerging option for next-generation technologies with attractive cost due to the use of abundant elements as sodium. To identify the right candidates their ion transport properties need to be precisely studied. In many cases less is known about the contributions of blocking grain boundaries to the overall charge carrier transport. Here, we took advantage of broadband impedance and conductivity spectroscopy carried out at sufficiently low temperature to make visible these two contributions for polycrystalline Na3Zr2(SiO4)2PO4. It turned out that ion transport across the grain boundaries of a sintered pellet do not greatly hinder long-range ion dynamics. While bulk ion dynamics in Na3Zr2(SiO4)2PO4 is characterized by 1.0 mS cm−1, the grain boundary ionic conductivity is only slightly lower viz. 0.7 mS cm−1. The latter value is of large practical interest as it allows the realization of all-solid-state Na batteries without strong interfering resistances from grain boundaries.
000850877 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000850877 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000850877 588__ $$aDataset connected to CrossRef
000850877 7001_ $$0P:(DE-Juel1)129628$$aMa, Qianli$$b1$$ufzj
000850877 7001_ $$0P:(DE-HGF)0$$aRettenwander, D.$$b2
000850877 7001_ $$0P:(DE-HGF)0$$aHanzu, I.$$b3
000850877 7001_ $$0P:(DE-Juel1)129667$$aTietz, F.$$b4$$ufzj
000850877 7001_ $$0P:(DE-HGF)0$$aWilkening, H. M. R.$$b5$$eCorresponding author
000850877 773__ $$0PERI:(DE-600)1466293-0$$a10.1016/j.cplett.2018.04.037$$gVol. 701, p. 147 - 150$$p147 - 150$$tChemical physics letters$$v701$$x0009-2614$$y2018
000850877 8564_ $$uhttps://juser.fz-juelich.de/record/850877/files/1-s2.0-S0009261418303221-main.pdf$$yRestricted
000850877 8564_ $$uhttps://juser.fz-juelich.de/record/850877/files/1-s2.0-S0009261418303221-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000850877 909CO $$ooai:juser.fz-juelich.de:850877$$pVDB
000850877 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129628$$aForschungszentrum Jülich$$b1$$kFZJ
000850877 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b4$$kFZJ
000850877 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000850877 9141_ $$y2018
000850877 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000850877 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM PHYS LETT : 2015
000850877 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850877 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000850877 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000850877 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000850877 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000850877 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850877 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850877 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850877 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850877 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000850877 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000850877 920__ $$lyes
000850877 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000850877 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
000850877 980__ $$ajournal
000850877 980__ $$aVDB
000850877 980__ $$aI:(DE-Juel1)IEK-1-20101013
000850877 980__ $$aI:(DE-Juel1)IEK-12-20141217
000850877 980__ $$aUNRESTRICTED
000850877 981__ $$aI:(DE-Juel1)IMD-4-20141217
000850877 981__ $$aI:(DE-Juel1)IMD-2-20101013