000850879 001__ 850879
000850879 005__ 20240712113103.0
000850879 0247_ $$2doi$$a10.1016/j.ssi.2018.04.010
000850879 0247_ $$2ISSN$$a0167-2738
000850879 0247_ $$2ISSN$$a1872-7689
000850879 0247_ $$2WOS$$aWOS:000437372200013
000850879 037__ $$aFZJ-2018-04630
000850879 082__ $$a530
000850879 1001_ $$0P:(DE-Juel1)156509$$aDashjav, Enkhtsetseg$$b0$$eCorresponding author$$ufzj
000850879 245__ $$aThe influence of water on the electrical conductivity of aluminum-substituted lithium titanium phosphates
000850879 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000850879 3367_ $$2DRIVER$$aarticle
000850879 3367_ $$2DataCite$$aOutput Types/Journal article
000850879 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1537446044_4942
000850879 3367_ $$2BibTeX$$aARTICLE
000850879 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850879 3367_ $$00$$2EndNote$$aJournal Article
000850879 520__ $$aLi1+xAlxTi2−x(PO4)3 (0.1 ≤ x ≤ 0.6) powders were prepared by a novel sol-gel method with high phase purity, densification activity and conductivity. Diffraction analyses showed that the solubility limit of Al3+ was reached at x = 0.5. The highest ionic conductivity was obtained for Li1.5Al0.5Ti1.5(PO4)3, which reached 1.0 × 10−3 S cm−1 at 25 °C when tested in ambient air. However, measurements in dry argon resulted in a conductivity of only 5 × 10−4 S cm−1 at 25 °C. Hence, the influence of moisture or water on microstructure and grain-boundary conductivity was investigated by impedance spectroscopy, scanning electron microscopy, Raman spectroscopy, X-ray and neutron diffraction. An ion exchange of Li+ by protons could not be unambiguously achieved by exposure of LATP powder in water. Neutron diffraction of humidified samples did not clearly indicate the presence of water or protons in the crystal structure of LATP, whereas μ-Raman measurements confirmed the presence of water/protons on the sample surface and in the bulk material. A higher signal of the vibrational modes of H2O was measured on grain boundaries than in the grain interior on the sample surface as well as on the fractured surface of sintered specimens. Therefore the higher apparent conductivity of LATP samples may predominantly result from adsorbed water from ambient air at grain boundaries. Hence, the conductivity tested in dry argon represents the correct conductivity of LATP samples. The highest density after sintering is not necessarily leading to high conductivity but rather the microstructure plays the dominant role.
000850879 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000850879 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000850879 588__ $$aDataset connected to CrossRef
000850879 7001_ $$0P:(DE-Juel1)129628$$aMa, Qianli$$b1$$ufzj
000850879 7001_ $$0P:(DE-HGF)0$$aXu, Qu$$b2
000850879 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b3
000850879 7001_ $$0P:(DE-HGF)0$$aGiarola, Marco$$b4
000850879 7001_ $$0P:(DE-HGF)0$$aMariotto, Gino$$b5
000850879 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b6
000850879 773__ $$0PERI:(DE-600)1500750-9$$a10.1016/j.ssi.2018.04.010$$gVol. 321, p. 83 - 90$$p83 - 90$$tSolid state ionics$$v321$$x0167-2738$$y2018
000850879 8564_ $$uhttps://juser.fz-juelich.de/record/850879/files/1-s2.0-S0167273817308081-main.pdf$$yRestricted
000850879 8564_ $$uhttps://juser.fz-juelich.de/record/850879/files/1-s2.0-S0167273817308081-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000850879 909CO $$ooai:juser.fz-juelich.de:850879$$pVDB
000850879 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156509$$aForschungszentrum Jülich$$b0$$kFZJ
000850879 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129628$$aForschungszentrum Jülich$$b1$$kFZJ
000850879 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
000850879 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich$$b3$$kFZJ
000850879 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b6$$kFZJ
000850879 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000850879 9141_ $$y2018
000850879 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000850879 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOLID STATE IONICS : 2015
000850879 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850879 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000850879 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000850879 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850879 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850879 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850879 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850879 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000850879 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000850879 920__ $$lyes
000850879 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000850879 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
000850879 980__ $$ajournal
000850879 980__ $$aVDB
000850879 980__ $$aI:(DE-Juel1)IEK-1-20101013
000850879 980__ $$aI:(DE-Juel1)IEK-12-20141217
000850879 980__ $$aUNRESTRICTED
000850879 981__ $$aI:(DE-Juel1)IMD-4-20141217
000850879 981__ $$aI:(DE-Juel1)IMD-2-20101013