000850885 001__ 850885
000850885 005__ 20210129234648.0
000850885 0247_ $$2doi$$a10.1021/acs.biochem.8b00645
000850885 0247_ $$2ISSN$$a0006-2960
000850885 0247_ $$2ISSN$$a1520-4995
000850885 0247_ $$2pmid$$apmid:29989797
000850885 0247_ $$2WOS$$aWOS:000442184600008
000850885 0247_ $$2altmetric$$aaltmetric:49642685
000850885 037__ $$aFZJ-2018-04636
000850885 082__ $$a570
000850885 1001_ $$0P:(DE-Juel1)162158$$aFettweiss, Timo$$b0
000850885 245__ $$aMechanistic Basis of the Fast Dark Recovery of the Short LOV Protein DsLOV from Dinoroseobacter shibae
000850885 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2018
000850885 3367_ $$2DRIVER$$aarticle
000850885 3367_ $$2DataCite$$aOutput Types/Journal article
000850885 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1539239209_30019
000850885 3367_ $$2BibTeX$$aARTICLE
000850885 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850885 3367_ $$00$$2EndNote$$aJournal Article
000850885 520__ $$aLight, oxygen, voltage (LOV) proteins, a ubiquitously distributed class of photoreceptors, regulate a wide variety of light-dependent physiological responses. Because of their modular architecture, LOV domains, i.e., the sensory domains of LOV photoreceptors, have been widely used for the construction of optogenetic tools. We recently described the structure and function of a short LOV protein (DsLOV) from the marine phototropic bacterium Dinoroseobacter shibae, for which, in contrast to other LOV photoreceptors, the dark state represents the physiologically relevant signaling state. Among bacterial LOV photoreceptors, DsLOV possesses an exceptionally fast dark recovery, corroborating its function as a "dark" sensor. To address the mechanistic basis of this unusual characteristic, we performed a comprehensive mutational, kinetic, thermodynamic, and structural characterization of DsLOV. The mechanistic basis of the fast dark recovery of the protein was revealed by mutation of the previously noted uncommon residue substitution at position 49 found in DsLOV. The substitution of M49 with different residues that are naturally conserved in LOV domains tuned the dark-recovery time of DsLOV over 3 orders of magnitude, without grossly affecting its overall structure or the light-dependent structural change observed for the wild-type protein. Our study thus provides a striking example of how nature can achieve LOV photocycle tuning by subtle structural alterations in the LOV domain active site, highlighting the easy evolutionary adaptability of the light sensory function. At the same time, our data provide guidance for the mutational photocycle tuning of LOV domains, with relevance for the growing field of optogenetics.
000850885 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000850885 588__ $$aDataset connected to CrossRef
000850885 7001_ $$0P:(DE-Juel1)157880$$aRöllen, Katrin$$b1
000850885 7001_ $$0P:(DE-Juel1)131965$$aGranzin, Joachim$$b2
000850885 7001_ $$0P:(DE-Juel1)166304$$aReiners, Oliver$$b3
000850885 7001_ $$0P:(DE-Juel1)131430$$aEndres, Stephan$$b4
000850885 7001_ $$0P:(DE-Juel1)131426$$aDrepper, Thomas$$b5
000850885 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b6
000850885 7001_ $$0P:(DE-Juel1)131457$$aJaeger, Karl-Erich$$b7
000850885 7001_ $$0P:(DE-Juel1)131950$$aBatra-Safferling, Renu$$b8$$eCorresponding author
000850885 7001_ $$0P:(DE-Juel1)131482$$aKrauss, Ulrich$$b9$$eCorresponding author
000850885 773__ $$0PERI:(DE-600)1472258-6$$a10.1021/acs.biochem.8b00645$$gp. acs.biochem.8b00645$$n32$$p4833–4847$$tBiochemistry$$v57$$x1520-4995$$y2018
000850885 8564_ $$uhttps://juser.fz-juelich.de/record/850885/files/Mechanistic%20Basis%20of%20the%20Fast%20Dark%20Recovery%20of%20the%20Short%20LOV%20Protein%20DsLOV%20from%20Dinoroseobacter%20shibae.pdf$$yRestricted
000850885 8564_ $$uhttps://juser.fz-juelich.de/record/850885/files/Mechanistic%20Basis%20of%20the%20Fast%20Dark%20Recovery%20of%20the%20Short%20LOV%20Protein%20DsLOV%20from%20Dinoroseobacter%20shibae.pdf?subformat=pdfa$$xpdfa$$yRestricted
000850885 909CO $$ooai:juser.fz-juelich.de:850885$$pVDB
000850885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162158$$aForschungszentrum Jülich$$b0$$kFZJ
000850885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157880$$aForschungszentrum Jülich$$b1$$kFZJ
000850885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131965$$aForschungszentrum Jülich$$b2$$kFZJ
000850885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131426$$aForschungszentrum Jülich$$b5$$kFZJ
000850885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich$$b6$$kFZJ
000850885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131457$$aForschungszentrum Jülich$$b7$$kFZJ
000850885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131950$$aForschungszentrum Jülich$$b8$$kFZJ
000850885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131482$$aForschungszentrum Jülich$$b9$$kFZJ
000850885 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000850885 9141_ $$y2018
000850885 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000850885 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850885 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000850885 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000850885 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOCHEMISTRY-US : 2015
000850885 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000850885 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000850885 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850885 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850885 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850885 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850885 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000850885 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000850885 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000850885 920__ $$lyes
000850885 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000850885 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x1
000850885 980__ $$ajournal
000850885 980__ $$aVDB
000850885 980__ $$aI:(DE-Juel1)ICS-6-20110106
000850885 980__ $$aI:(DE-Juel1)IMET-20090612
000850885 980__ $$aUNRESTRICTED
000850885 981__ $$aI:(DE-Juel1)IBI-7-20200312