001     850885
005     20210129234648.0
024 7 _ |a 10.1021/acs.biochem.8b00645
|2 doi
024 7 _ |a 0006-2960
|2 ISSN
024 7 _ |a 1520-4995
|2 ISSN
024 7 _ |a pmid:29989797
|2 pmid
024 7 _ |a WOS:000442184600008
|2 WOS
024 7 _ |a altmetric:49642685
|2 altmetric
037 _ _ |a FZJ-2018-04636
082 _ _ |a 570
100 1 _ |a Fettweiss, Timo
|0 P:(DE-Juel1)162158
|b 0
245 _ _ |a Mechanistic Basis of the Fast Dark Recovery of the Short LOV Protein DsLOV from Dinoroseobacter shibae
260 _ _ |a Columbus, Ohio
|c 2018
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1539239209_30019
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Light, oxygen, voltage (LOV) proteins, a ubiquitously distributed class of photoreceptors, regulate a wide variety of light-dependent physiological responses. Because of their modular architecture, LOV domains, i.e., the sensory domains of LOV photoreceptors, have been widely used for the construction of optogenetic tools. We recently described the structure and function of a short LOV protein (DsLOV) from the marine phototropic bacterium Dinoroseobacter shibae, for which, in contrast to other LOV photoreceptors, the dark state represents the physiologically relevant signaling state. Among bacterial LOV photoreceptors, DsLOV possesses an exceptionally fast dark recovery, corroborating its function as a "dark" sensor. To address the mechanistic basis of this unusual characteristic, we performed a comprehensive mutational, kinetic, thermodynamic, and structural characterization of DsLOV. The mechanistic basis of the fast dark recovery of the protein was revealed by mutation of the previously noted uncommon residue substitution at position 49 found in DsLOV. The substitution of M49 with different residues that are naturally conserved in LOV domains tuned the dark-recovery time of DsLOV over 3 orders of magnitude, without grossly affecting its overall structure or the light-dependent structural change observed for the wild-type protein. Our study thus provides a striking example of how nature can achieve LOV photocycle tuning by subtle structural alterations in the LOV domain active site, highlighting the easy evolutionary adaptability of the light sensory function. At the same time, our data provide guidance for the mutational photocycle tuning of LOV domains, with relevance for the growing field of optogenetics.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Röllen, Katrin
|0 P:(DE-Juel1)157880
|b 1
700 1 _ |a Granzin, Joachim
|0 P:(DE-Juel1)131965
|b 2
700 1 _ |a Reiners, Oliver
|0 P:(DE-Juel1)166304
|b 3
700 1 _ |a Endres, Stephan
|0 P:(DE-Juel1)131430
|b 4
700 1 _ |a Drepper, Thomas
|0 P:(DE-Juel1)131426
|b 5
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 6
700 1 _ |a Jaeger, Karl-Erich
|0 P:(DE-Juel1)131457
|b 7
700 1 _ |a Batra-Safferling, Renu
|0 P:(DE-Juel1)131950
|b 8
|e Corresponding author
700 1 _ |a Krauss, Ulrich
|0 P:(DE-Juel1)131482
|b 9
|e Corresponding author
773 _ _ |a 10.1021/acs.biochem.8b00645
|g p. acs.biochem.8b00645
|0 PERI:(DE-600)1472258-6
|n 32
|p 4833–4847
|t Biochemistry
|v 57
|y 2018
|x 1520-4995
856 4 _ |u https://juser.fz-juelich.de/record/850885/files/Mechanistic%20Basis%20of%20the%20Fast%20Dark%20Recovery%20of%20the%20Short%20LOV%20Protein%20DsLOV%20from%20Dinoroseobacter%20shibae.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/850885/files/Mechanistic%20Basis%20of%20the%20Fast%20Dark%20Recovery%20of%20the%20Short%20LOV%20Protein%20DsLOV%20from%20Dinoroseobacter%20shibae.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:850885
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162158
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157880
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131965
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131426
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)132029
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131950
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131482
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOCHEMISTRY-US : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
920 1 _ |0 I:(DE-Juel1)IMET-20090612
|k IMET
|l Institut für Molekulare Enzymtechnologie (HHUD)
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a I:(DE-Juel1)IMET-20090612
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21