000850920 001__ 850920
000850920 005__ 20240711114057.0
000850920 0247_ $$2doi$$a10.1088/1741-4326/aad296
000850920 0247_ $$2ISSN$$a0029-5515
000850920 0247_ $$2ISSN$$a1741-4326
000850920 0247_ $$2WOS$$aWOS:000440052000001
000850920 0247_ $$2altmetric$$aaltmetric:45616664
000850920 037__ $$aFZJ-2018-04654
000850920 082__ $$a530
000850920 1001_ $$0P:(DE-Juel1)171372$$aXu, S.$$b0$$eCorresponding author$$ufzj
000850920 245__ $$aFirst three-dimensional edge plasma transport simulations with magnetic perturbations induced by lower hybrid waves on EAST
000850920 260__ $$aVienna$$bIAEA$$c2018
000850920 3367_ $$2DRIVER$$aarticle
000850920 3367_ $$2DataCite$$aOutput Types/Journal article
000850920 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552414133_13872
000850920 3367_ $$2BibTeX$$aARTICLE
000850920 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850920 3367_ $$00$$2EndNote$$aJournal Article
000850920 520__ $$aRecent experiments from the Experimental Advanced Superconducting Tokamak (EAST) show that lower hybrid waves (LHWs) can profoundly change the magnetic topology by inducing helical current filaments flowing along magnetic field lines in the scrape-off layer. Here, it is investigated for the first time how these magnetic perturbations caused by LHWs affect the edge plasma transport utilizing the three-dimensional Monte Carlo code EMC3-EIRENE, both in double-null and single-null configurations. The 3D magnetic topology structure is reflected in the plasma properties, due to much stronger parallel field transport compared with cross field diffusion. Good qualitative agreements between simulation results and experimental data from various edge diagnostics demonstrate that the EMC3-EIRENE code now is capable of taking into account the LHW-induced magnetic perturbation fields with both physical and geometrical effects being considered. Combined with experimental observations, the simulation results strongly support that total current amplitude of LHW-induced filaments increases with an increase in LHW input power. It can further deepen the penetration depth of the additional transport channel by extending the stochastic edge layer, and influence the ratio of heat (or particle) flux between split striated and original strike line on divertor targets. The 3D simulation results also indicate that the additional plasma transport channel induced by LHWs can significantly cause the redistribution of heat load between inner and outer divertor targets, which could not be found by the field line tracing method in previous works.
000850920 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000850920 536__ $$0G:(DE-Juel1)jiek42_20180501$$aPredictive EMC3-EIRENE modelling and diagnostic interpretation for Wendelstein 7-X and EAST (jiek42_20180501)$$cjiek42_20180501$$fPredictive EMC3-EIRENE modelling and diagnostic interpretation for Wendelstein 7-X and EAST$$x1
000850920 588__ $$aDataset connected to CrossRef
000850920 7001_ $$0P:(DE-Juel1)145407$$aRack, M.$$b1
000850920 7001_ $$0P:(DE-Juel1)130088$$aLiang, Yunfeng$$b2$$eCorresponding author$$ufzj
000850920 7001_ $$0P:(DE-HGF)0$$aHuang, J.$$b3
000850920 7001_ $$0P:(DE-Juel1)173884$$aJia, M.$$b4
000850920 7001_ $$0P:(DE-Juel1)6982$$aFeng, Y.$$b5
000850920 7001_ $$0P:(DE-Juel1)167468$$aCosfeld, J.$$b6$$ufzj
000850920 7001_ $$0P:(DE-HGF)0$$aZhang, H.$$b7
000850920 7001_ $$0P:(DE-HGF)0$$aLiu, S.$$b8
000850920 7001_ $$0P:(DE-Juel1)161317$$aGao, Yu$$b9$$ufzj
000850920 7001_ $$0P:(DE-HGF)0$$aGan, K.$$b10
000850920 7001_ $$0P:(DE-HGF)0$$aFeng, W.$$b11
000850920 7001_ $$0P:(DE-HGF)0$$aWang, L.$$b12
000850920 7001_ $$0P:(DE-Juel1)171409$$aZholobenko, W.$$b13
000850920 7001_ $$0P:(DE-Juel1)5006$$aReiter, D.$$b14$$ufzj
000850920 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/aad296$$gVol. 58, no. 10, p. 106008 -$$n10$$p106008 -$$tNuclear fusion$$v58$$x1741-4326$$y2018
000850920 8564_ $$uhttps://juser.fz-juelich.de/record/850920/files/8102722_0.pdf
000850920 8564_ $$uhttps://juser.fz-juelich.de/record/850920/files/Xu_2018_Nucl._Fusion_58_106008.pdf$$yRestricted
000850920 8564_ $$uhttps://juser.fz-juelich.de/record/850920/files/8102722_0.gif?subformat=icon$$xicon
000850920 8564_ $$uhttps://juser.fz-juelich.de/record/850920/files/8102722_0.jpg?subformat=icon-1440$$xicon-1440
000850920 8564_ $$uhttps://juser.fz-juelich.de/record/850920/files/8102722_0.jpg?subformat=icon-180$$xicon-180
000850920 8564_ $$uhttps://juser.fz-juelich.de/record/850920/files/8102722_0.jpg?subformat=icon-640$$xicon-640
000850920 8564_ $$uhttps://juser.fz-juelich.de/record/850920/files/8102722_0.pdf?subformat=pdfa$$xpdfa
000850920 8564_ $$uhttps://juser.fz-juelich.de/record/850920/files/Xu_2018_Nucl._Fusion_58_106008.gif?subformat=icon$$xicon$$yRestricted
000850920 8564_ $$uhttps://juser.fz-juelich.de/record/850920/files/Xu_2018_Nucl._Fusion_58_106008.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000850920 8564_ $$uhttps://juser.fz-juelich.de/record/850920/files/Xu_2018_Nucl._Fusion_58_106008.jpg?subformat=icon-180$$xicon-180$$yRestricted
000850920 8564_ $$uhttps://juser.fz-juelich.de/record/850920/files/Xu_2018_Nucl._Fusion_58_106008.jpg?subformat=icon-640$$xicon-640$$yRestricted
000850920 8564_ $$uhttps://juser.fz-juelich.de/record/850920/files/Xu_2018_Nucl._Fusion_58_106008.pdf?subformat=pdfa$$xpdfa$$yRestricted
000850920 8767_ $$88102722$$92018-08-01$$d2018-08-02$$ePage charges$$jZahlung erfolgt
000850920 909CO $$ooai:juser.fz-juelich.de:850920$$popenCost$$pOpenAPC$$pVDB
000850920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171372$$aForschungszentrum Jülich$$b0$$kFZJ
000850920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145407$$aForschungszentrum Jülich$$b1$$kFZJ
000850920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130088$$aForschungszentrum Jülich$$b2$$kFZJ
000850920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173884$$aForschungszentrum Jülich$$b4$$kFZJ
000850920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167468$$aForschungszentrum Jülich$$b6$$kFZJ
000850920 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b7$$kExtern
000850920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161317$$aForschungszentrum Jülich$$b9$$kFZJ
000850920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5006$$aForschungszentrum Jülich$$b14$$kFZJ
000850920 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000850920 9141_ $$y2018
000850920 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000850920 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000850920 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2015
000850920 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850920 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000850920 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000850920 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850920 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850920 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850920 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850920 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000850920 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000850920 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000850920 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000850920 9801_ $$aAPC
000850920 980__ $$ajournal
000850920 980__ $$aVDB
000850920 980__ $$aI:(DE-Juel1)IEK-4-20101013
000850920 980__ $$aI:(DE-82)080012_20140620
000850920 980__ $$aAPC
000850920 980__ $$aUNRESTRICTED
000850920 981__ $$aI:(DE-Juel1)IFN-1-20101013