
89

Vol. 16 No. 1

EU H2020 CoE Performance
Optimization and Productivity (POP)
Successfully Finished

From October 2015 to March 2018, the EU Hori-

zon 2020 Center of Excellence (CoE) for Per-

formance Optimisation and Productivity (POP)

provided performance optimisation and pro-

ductivity services for academic and industrial

codes. Europe’s leading high-performance com-

puting experts helped application develo pers

get a precise understanding of their respective

applications’ and systems’ behaviour. Both

established codes and codes which had never

undergone any analysis or performance tuning

profited from POP services, which used latest

state-of-the-art tools to detect and locate bottle-

necks in applications, suggested possible code

improvements, and even helped with proof-of-

concept experiments for customer codes on

their own platforms.

Today’s complexity of high-performance com-

puter systems and codes makes it increasingly

difficult to get applications running fast and

efficiently on the latest hardware. Often expert

knowledge and a good amount of experience is

needed to figure out the most productive direc-

tion for code refactoring. Many domain experts

in in industry and academia use computer sim-

ulations, but lack this knowledge.

As a result, their codes are often far away from

using the hardware efficiently, using much more

compute time than needed. This lack of optimi-

zation can waste energy, require superfluously

oversized and expensive hardware, or just miss

research potential, as their codes can only han-

dle smaller or less complex problems in the

available amount of compute time.

To overcome this situation, the POP CoE

brought users a service that tightly couples two

disciplines crucial for the efficient use of paral-

lel computers in the future: First, powerful per-

formance analysis tools, methodologies, and

expertise needed to precisely understand and

gain real insight into the actual application and

system behaviour as well as a deep understand-

ing of programming models and best-practice

guidance needed to express algorithms in the

most flexible, maintainable and portable way,

while still being able to maximise the perfor-

mance achieved.

POP Services
The POP CoE team comprised six partner

organi sations with experts in high-perfor-

mance computing with long-standing experi-

ence in performance tools and tuning as well as

researchers in the field of programming models

and programming practices. All partners have

a research and development background and

proven commitment to applying their know-how

to real academic and industrial use cases. The

POP CoE provided three kind of service levels to

its customers – depending on their background,

knowledge, and demands:

?: Application Performance Audit

This was the primary service of the POP CoE

and the starting point for any further work.

Applications using this service were analyzed

by POP experts after an initial discussion with

respect to their best practices and provided

a first impression of the code status. Within

the Performance Audit, the customer’s code

inSiDE | Spring 2018

90

performance issues could be identified at the

location a customer would normally run his or

her code. It also served as a starting point for

further analysis or initial code refactoring. The

duration for a Performance Audit averaged

around two months and a successful Perfor-

mance Audit may be seen as a code quality

certificate in HPC.

!: Application Performance Plan

The Performance Plan service followed the

Performance Audit when the customer needed

more detailed knowledge where and how

to address specific issues in the code. POP

experts developed together with the cus-

tomer a plan how and with which tools to ana-

lyse the issues under investigation. The POP

experts then analysed the code in detail and

gave quantified advice to overcome the prob-

lems that could be fixed by the customer. The

duration for a Performance Plan is very prob-

lem-specific, but always included a closer look

into the source code.

When requested, proof-of-concept studies were

performed. This included experiments and

mock-up tests for customer codes. The details

of the proof-of-concept study were decided in

very close collaboration with the customer and

could include kernel extraction from the applica-

tion, parallelisation, or mini-apps experiments to

show effects of the POP experts’ proposed opti-

misations. As this very complex task goes into

deep detail, proof-of-concept work sometimes

required about six months.

Besides the above three key services, the POP

CoE also provided a variety of training activities

in the field of performance analysis and optimisa-

tion to improve basic high-performance program-

ming knowledge and increase the awareness of

performance issues and potentials in general.

Codes Analyzed
In its 30 months of operation, POP has under-

taken over 150 assessments of codes drawn

from a wide range of scientific domains cover-

ing astronomy, chemistry, Earth science, energy,

engineering, health, mathematics and physics.

Although the bulk (80%) of POP studies have

looked at codes that run best on more than 10

but less than 1,000 cores, POP also performed

assessments on larger scale codes over

100,000 cores.

Roughly half of the assessments originated from

academic institutions, a quarter from research or

government laboratories, and a quarter had an

industrial background.

Languages and Parallelism

As one might expect, Fortran codes dominate,

with over half the studies (82 of 151) written either

entirely in Fortran or Fortran combined with C

91

Vol. 16 No. 1

and/or C++. C++ seems more prevalent than C,

but C is more likely than C++ to be combined

with Fortran:

The “Others“ category makes up about 10%

of studies. Of these, 13 involved Python, either

stand-alone (3) or in conjunction with one or

more compiled language, and the remainder

were a combined C/Fortran/Octave code, a

Java code, a Matlab code, and a Perl code. The

fact that 10% of codes that POP assessed are

written in languages other than C/C++/Fortran

demonstrate that it‘s important to have tools

and methodologies capable of handling a wide

range of languages and not just the usual sus-

pects.

A similar situation arises looking at the types

of parallelism used by the codes studied by

POP. MPI is the most common form of par-

allelisation, with nearly 80% of codes using

either pure MPI or MPI+OpenMP. Over a third of

codes POP has assessed are hybrid combining

MPI+OpenMP.

7 codes could also use CUDA and there is again

an „Others“ category, but unlike the correspond-

ing category for the languages every member of

this set is unique. Examples of the other types

of parallelism we encountered include Intel

Threading Building Blocks (TBB), C++ threading

and Coarray Fortran.

Causes of Low Efficiencies

The POP efficiency metrics [1] provide a

methodology for characterising the perfor-

mance of parallel codes and for providing

insight into where the most pressing prob-

lems lie. Looking across all the POP studies

we can use the metrics to discern whether

there are any overarching performance

trends.

Fig.2: Programming languages used by POP custom-
er applications. The areas of the circles in the Venn
diagram are proportional to the number of studies they
contain.

Fig.3: Parallelization paradigm used by POP custom-
er applications. The areas of the circles in the Venn
diagram are proportional to the number of studies they
contain.

inSiDE | Spring 2018

92

Of the analysed codes, 66% had a Parallel Effi-

ciency less than 80%, meaning that they typi-

cally required improvement to run efficiently in

parallel. Indeed, 22% of codes had Parallel Effi-

ciency below 50%, which means that less than

half of their runtime is dedicated to computation.

Note that analysis generally omits initialisation

and finalisation, so in practice their efficiency is

even worse.

Looking at the actual numbers reported in the

studies, we find that Load Balance Efficiency

is often either very good or very bad. This sug-

gests that load balance is something users must

ensure is done correctly or else can have sig-

nificant impact on efficiency, particularly when

scaling to larger numbers of cores.

We can also use the hierarchical nature of the

metrics to look at the common underlying

causes of low efficiencies. Low Communica-

tion Efficiency is mostly caused by data transfer

(high volume of data or high number of commu-

nications) rather than serialisation of commu-

nication. Low Computation Efficiency is often

caused by poor instruction scalability rather

than reduced instructions-per-cycle IPC values;

when strong scaling, growth in the total number

of instructions executed often corresponds to

undesirable code replication.

POP staff can look further into the categories

of problems to see if there is a link between

programming approach and the types of prob-

lems. Although there was no obvious correla-

tion between language and inefficiency (e.g. we

couldn‘t conclude things like “C programmers

were more likely to write badly load-balanced

code“), there was an interesting distinction to

be drawn based on the type of parallelism the

code employed.

For each study we recorded the main cause of

inefficiency that was identified (i.e. load balance,

computation or communication) and looked at

how this varied across the three main types of

parallelism:

From the graph, we can see that studies of

hybrid codes were much more likely to report

problems with load balance than studies of pure

MPI or pure OpenMP codes. This is perhaps

understandable—when writing hybrid code,

users need to take into account both how the

work is divided across MPI ranks and also how

it is split up between threads of a process.

Results
The POP project was very successful: more than

90% of the customers were either very satisfied

or satisfied with the service they received. More

than half of the customers of a Performance

Audit requested a follow-up service. More than

2/3 of the customers with Performance Plans

indicated they plan to use POP services again.

93

Vol. 16 No. 1

The proof-of-concept studies, where POP

experts worked together with the developers on

improving their codes, were especially success-

ful: in many cases, they were able to demon-

strate a doubling of the performance and/or

scalability of the codes investigated. In some

cases, a six- to ten-fold improvement could be

implemented. A more detailed description of

these accomplishments can be found on the

POP blog under the tag “success stories” [2].

In the case of Performance Plans, where devel-

opers improved their codes themselves based

on the recommendations given by the POP

experts, they reported a 25% performance or

scalability improvement on average, in some

cases even 50% to 70%, allowing them to treat

larger problems or better exploit new architec-

tures. Customers also reported that, in most

cases, only a few days’ effort was necessary to

perform this work; the remainder required either

a few weeks’ or a few months’ effort.

The return-on-investment (ROI) in these cases

are enormous, as the following two examples

demonstrate: In the first case, where an applica-

tion running on the UK national academic super-

computer (Archer) was first analyzed and then

in a proof-of-concept study, had a 72% improve-

ment in time-to-solution could be implemented.

The saving in compute time for a typical run of

this code was €15.58, which resulted in a yearly

saving of €56,000 for this specific customer

based on their monthly usage data. In the other

example, the customer reported that the costs

for implementing the recommendations of the

POP experts were €2,000 and resulted in a 62%

performance improvement. By this, €12,400 of

the customer’s annual €20,000 operating cost

could be saved, resulting in a ROI of 620%.

Impact
The POP CoE, with its service and training

activities, had a wide impact within all areas of

research and industry, making it a real trans-

versal activity:

expertise that enables researchers and industry

to be more productive, leading to scientific and

industrial excellence.

-

tre’s customers by generating a tangible

return-on-investment (ROI) in terms of savings,

elimination of waste, errors, and delays by mak-

ing their applications leaner and issue-free.

class expertise in this area, its deployment

strengthened Europe’s leading position in

inSiDE | Spring 2018

94

the development and use of applications that

address societal challenges or are important

for industrial applications through better code

performance and better code maintenance and

availability.

use of computational methods and optimisa-

tion of applications; especially successful were

webinars [3].

It is planned to continue the POP CoE project for

additional three years (2019 to 2021). A proposal

was prepared and submitted by the partners for

the call INFRAEDI-02-2018: HPC PPP – Centres

of Excellence on HPC.

Partners
Barcelona Supercomputing Centre (BSC), High-

Performance Computing Center Stuttgart of

the University of Stuttgart (HLRS), Jülich Super-

computing Centre (JSC), Numerical Algorithms

Group (NAG), Rheinisch-Westfälische Tech-

nische Hochschule Aachen (RWTH), and TER-

ATEC.

Timeframe
October 2015 – March 2018

POP Coordination
Prof. Jesus Labarta, Judit Gimenez Barcelona

Supercomputing Center (BSC)

Email: pop@bsc.es

Web: https://www.pop-coe.eu

Acknowledgements
This project was supported by the European

Commission under H2020 Grant Agreement

No. 676553

References
[1] https://pop-coe.eu/node/69

[2] https://pop-coe.eu/blog/tags/success-stories

[3] https://pop-coe.eu/blog/tags/webinar

Written by Bernd Mohr, Brian J. N. Wylie
Jülich Supercomputing Centre (JSC)

Contact: b.mohr@fz-juelich.de, b.wylie@fz-juelich.de

José Gracia, Christoph Niethammer
University of Stuttgart (HLRS)

Contact: gracia@hlrs.de, niethammer@hlrs.de

