000850952 001__ 850952
000850952 005__ 20230426083201.0
000850952 0247_ $$2doi$$a10.1103/PhysRevB.98.075402
000850952 0247_ $$2ISSN$$a0163-1829
000850952 0247_ $$2ISSN$$a0556-2805
000850952 0247_ $$2ISSN$$a1094-1622
000850952 0247_ $$2ISSN$$a1095-3795
000850952 0247_ $$2ISSN$$a1098-0121
000850952 0247_ $$2ISSN$$a1550-235X
000850952 0247_ $$2ISSN$$a2469-9950
000850952 0247_ $$2ISSN$$a2469-9969
000850952 0247_ $$2Handle$$a2128/19612
000850952 0247_ $$2WOS$$aWOS:000440716700005
000850952 0247_ $$2altmetric$$aaltmetric:43648558
000850952 037__ $$aFZJ-2018-04683
000850952 082__ $$a530
000850952 1001_ $$0P:(DE-HGF)0$$aJeong, Sang-Min$$b0
000850952 245__ $$aCompeting edge structures of Sb and Bi bilayers generated by trivial and nontrivial band topologies
000850952 260__ $$aWoodbury, NY$$bInst.$$c2018
000850952 3367_ $$2DRIVER$$aarticle
000850952 3367_ $$2DataCite$$aOutput Types/Journal article
000850952 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536141625_466
000850952 3367_ $$2BibTeX$$aARTICLE
000850952 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000850952 3367_ $$00$$2EndNote$$aJournal Article
000850952 520__ $$aOne-dimensional (1D) edge states formed at the boundaries of 2D normal and topological insulators have shown intriguing quantum phases such as charge density wave and quantum spin Hall effect. Based on first-principles density-functional theory calculations including spin-orbit coupling (SOC), we show that the edge states of zigzag Sb(111) and Bi(111) nanoribbons drastically change the stability of their edge structures. For zigzag Sb(111) nanoribbon, the Peierls-distorted or reconstructed edge structure is stabilized by a band-gap opening. However, for zigzag Bi(111) nanoribbons, such insulating structures are destabilized due to the presence of topologically protected gapless edge states, resulting in the stabilization of a metallic, shear-distorted edge structure. We also show that the edge states of the Bi(111) nanoribbon exhibit a larger Rashba-type spin splitting at the boundary of Brillouin zone compared to those of the Sb(111) nanoribbon. Interestingly, the spin textures of edge states in the Peierls-distorted Sb edge structure and the shear-distorted Bi edge structure have all three spin components perpendicular and parallel to the edges due to their broken mirror-plane symmetry. The present findings demonstrate that the topologically trivial and nontrivial edge states play crucial roles in determining the edge structures of normal and topological insulators.
000850952 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000850952 542__ $$2Crossref$$i2018-08-03$$uhttps://link.aps.org/licenses/aps-default-license
000850952 588__ $$aDataset connected to CrossRef
000850952 7001_ $$0P:(DE-HGF)0$$aYi, Seho$$b1
000850952 7001_ $$0P:(DE-Juel1)176226$$aKim, Hyun-Jung$$b2$$ufzj
000850952 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, Gustav$$b3$$ufzj
000850952 7001_ $$0P:(DE-HGF)0$$aCho, Jun-Hyung$$b4$$eCorresponding author
000850952 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.98.075402$$bAmerican Physical Society (APS)$$d2018-08-03$$n7$$p075402$$tPhysical Review B$$v98$$x2469-9950$$y2018
000850952 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.98.075402$$gVol. 98, no. 7, p. 075402$$n7$$p075402$$tPhysical review / B$$v98$$x2469-9950$$y2018
000850952 8564_ $$uhttps://juser.fz-juelich.de/record/850952/files/PhysRevB.98.075402.pdf$$yOpenAccess
000850952 8564_ $$uhttps://juser.fz-juelich.de/record/850952/files/PhysRevB.98.075402.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000850952 909CO $$ooai:juser.fz-juelich.de:850952$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000850952 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176226$$aForschungszentrum Jülich$$b2$$kFZJ
000850952 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b3$$kFZJ
000850952 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000850952 9141_ $$y2018
000850952 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000850952 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000850952 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000850952 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2015
000850952 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000850952 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000850952 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000850952 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000850952 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000850952 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000850952 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000850952 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000850952 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000850952 920__ $$lyes
000850952 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000850952 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
000850952 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000850952 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000850952 980__ $$ajournal
000850952 980__ $$aVDB
000850952 980__ $$aUNRESTRICTED
000850952 980__ $$aI:(DE-Juel1)PGI-1-20110106
000850952 980__ $$aI:(DE-Juel1)IAS-1-20090406
000850952 980__ $$aI:(DE-82)080009_20140620
000850952 980__ $$aI:(DE-82)080012_20140620
000850952 9801_ $$aFullTexts
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1102896
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature04233
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature04235
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2014.35
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.119.106101
000850952 999C5 $$1R. E. Peierls$$2Crossref$$oR. E. Peierls Quantum Theory of Solids 1955$$tQuantum Theory of Solids$$y1955
000850952 999C5 $$1G. Grüner$$2Crossref$$oG. Grüner Density Waves in Solids 1994$$tDensity Waves in Solids$$y1994
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/381398a0
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.82.4898
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms1056
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.118.239601
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.96.235416
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.226801
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.146802
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.106802
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.82.3045
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.201410
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4776734
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.046403
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.236805
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.076804
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/jp108019b
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.121310
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.165412
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl2035018
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.7567/JJAP.51.025201
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl5009212
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.114.066402
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.115151
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.48.13115
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0927-0256(96)00008-0
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.1758
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3865
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature05180
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.035443
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0009-2614(86)80661-3
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.155435
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1329672
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3719/17/33/015
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3419
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.085303
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-017-02032-4
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.156803
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.93.161101
000850952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.106803