Hauptseite > Publikationsdatenbank > Investigation of the Li-ion conduction behavior in the Li 10 GeP 2 S 12 solid electrolyte by two-dimensional T 1 -spin alignment echo correlation NMR > print |
001 | 851008 | ||
005 | 20240712112817.0 | ||
024 | 7 | _ | |a 10.1016/j.jmr.2018.07.008 |2 doi |
024 | 7 | _ | |a 0022-2364 |2 ISSN |
024 | 7 | _ | |a 1090-7807 |2 ISSN |
024 | 7 | _ | |a 1096-0856 |2 ISSN |
024 | 7 | _ | |a 1557-8968 |2 ISSN |
024 | 7 | _ | |a pmid:30041071 |2 pmid |
024 | 7 | _ | |a WOS:000442065200015 |2 WOS |
024 | 7 | _ | |a altmetric:45403505 |2 altmetric |
037 | _ | _ | |a FZJ-2018-04722 |
041 | _ | _ | |a English |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Paulus, Marc |0 P:(DE-Juel1)165914 |b 0 |e Corresponding author |
245 | _ | _ | |a Investigation of the Li-ion conduction behavior in the Li 10 GeP 2 S 12 solid electrolyte by two-dimensional T 1 -spin alignment echo correlation NMR |
260 | _ | _ | |a Amsterdam [u.a.] |c 2018 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1536212802_464 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Li10GeP2S12 (LGPS) is the fastest known Li-ion conductor to date due to the formation of one-dimensional channels with a very high Li mobility. A knowledge-based optimization of such materials for use, for example, as solid electrolyte in all-solid-state batteries requires, however, a more comprehensive understanding of Li ion conduction that considers mobility in all three dimensions, mobility between crystallites and different phases, as well as their distributions within the material. The spin alignment echo (SAE) nuclear magnetic resonance (NMR) technique is suitable to directly probe slow Li ion hops with correlation times down to about 10−5 s, but distinction between hopping time constants and relaxation processes may be ambiguous. This contribution presents the correlation of the 7Li spin lattice relaxation (SLR) time constants (T1) with the SAE decay time constant τc to distinguish between hopping time constants and signal decay limited by relaxation in the τc distribution. A pulse sequence was employed with two independently varied mixing times. The obtained multidimensional time domain data was processed with an algorithm for discrete Laplace inversion that does not use a non-negativity constraint to deliver 2D SLR–SAE correlation maps. Using the full echo transient, it was also possible to estimate the NMR spectrum of the Li ions responsible for each point in the correlation map. The signal components were assigned to different environments in the LGPS structure. |
536 | _ | _ | |a 131 - Electrochemical Storage (POF3-131) |0 G:(DE-HGF)POF3-131 |c POF3-131 |f POF III |x 0 |
536 | _ | _ | |0 G:(DE-Juel1)HITEC-20170406 |x 1 |c HITEC-20170406 |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Graf, M. F. |0 P:(DE-Juel1)161347 |b 1 |
700 | 1 | _ | |a Harks, P. P. R. M. L. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Paulus, A. |0 P:(DE-Juel1)166099 |b 3 |
700 | 1 | _ | |a Schleker, P. P. M. |0 P:(DE-Juel1)168465 |b 4 |
700 | 1 | _ | |a Notten, P. H. L. |0 P:(DE-Juel1)165918 |b 5 |
700 | 1 | _ | |a Eichel, Rüdiger-A. |0 P:(DE-Juel1)156123 |b 6 |
700 | 1 | _ | |a Granwehr, Josef |0 P:(DE-Juel1)162401 |b 7 |
773 | _ | _ | |a 10.1016/j.jmr.2018.07.008 |g Vol. 294, p. 133 - 142 |0 PERI:(DE-600)1469665-4 |p 133 - 142 |t Journal of magnetic resonance |v 294 |y 2018 |x 1090-7807 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/851008/files/1-s2.0-S109078071830185X-main%281%29.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/851008/files/1-s2.0-S109078071830185X-main%281%29.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:851008 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)165914 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-Juel1)165914 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-Juel1)161347 |
910 | 1 | _ | |a University Eindhoven |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)166099 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 3 |6 P:(DE-Juel1)166099 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)168465 |
910 | 1 | _ | |a Max-Planck-Institut, Mülheim |0 I:(DE-HGF)0 |b 4 |6 P:(DE-Juel1)168465 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)165918 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)156123 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 6 |6 P:(DE-Juel1)156123 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)162401 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 7 |6 P:(DE-Juel1)162401 |
913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |2 G:(DE-HGF)POF3-100 |v Electrochemical Storage |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J MAGN RESON : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-9-20110218 |k IEK-9 |l Grundlagen der Elektrochemie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-9-20110218 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|