

Investigation of the Li-ion conduction behavior in the Li₁₀GeP₂S₁₂ solid electrolyte by two-dimensional T1-spin alignment echo correlation NMR

M.C. Paulus^{1,2}, M.F. Graf^{1,2}, P.P.R.M.L. Harks³, A. Paulus¹, P.P.M. Schleker^{1,4}, P.H.L. Notten^{1,3}, R.-A. Eichel^{1,5}, J. Granwehr^{1,2}

¹Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung (IEK-9), D-52425 Jülich, Germany

²RWTH Aachen University, Institut für Technische und Makromolekulare Chemie (ITMC), D-52074 Aachen, Germany

³Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, NL-5600 MB Eindhoven, The Netherlands

⁴Max-Planck-Institute for Chemical Energy Conversions, Mülheim an der Ruhr, Germany

⁵RWTH Aachen University, Institut für Physikalische Chemie (IPC), D-52074 Aachen, Germanv

Motivation

- All-solid-state batteries promise higher cycle life and safety
- Problem: Relatively slow Li ion migration
- Li₁₀GeP₂S₁₂ fastest known **solid electrolyte** material
- Little information about different Li migration mechanisms and structural features in the real powder sample
 - Investigate slow, rate-limiting transport mechanisms by a combination of spin-lattice relaxation and spin alignment echo correlation^[2,3]

Figure 1: Structure of LGPS and coordination polyhedron GeS4, PS4 and LiS6. Red arrows illustrate the Lithium pathways in the ab plane (left structure) and in the channels along the c direction (right structure).

- Space group: P4₂/nmc
- Ion conductivity of up to 12 mS/cm at 27 °C^[4]
- Fast migration through channels along c
- Interchannel migration over 4c position
- Poor knowledge about migration through different crystallite domains and grain boundaries

$t_{\rm d} 90^{\circ}_{\rm x} t_{\rm p} 45^{\circ}_{\rm y}$ **Figure 2:** Inversion recovery delay with the variable time t_d followed by the Jeener and

Broekaert [4] three pulse sequence with the variable mixing time t_m between the two

45° pulses and the constant evolution time t_0

Experimental Setup

- Jeener-Broekaert pulse sequence^[5] (figure 2) with preceding inversion recovery scheme formed the 2D experiment
- Delay time t_d and mixing time t_m logarithmically scaled from 10^{-5} s to 10^{1} s, with 16 increment steps for t_d and 32 steps for t_m
- Processing of the obtained multidimensional data (echo maxima and spectral dimension) with algorithm for discrete Laplace Inversion without non-negativity constraint
- → Negative relaxation contributions are not ruled out in point of possible exchange processes on NMR time scale during experiment

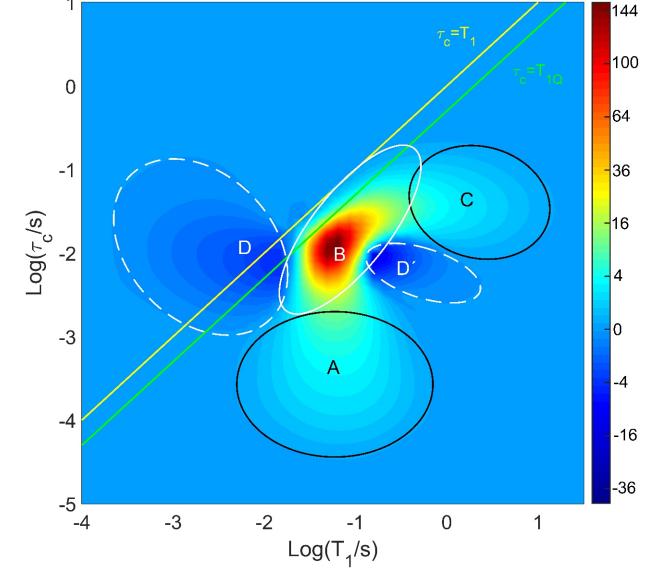
Results

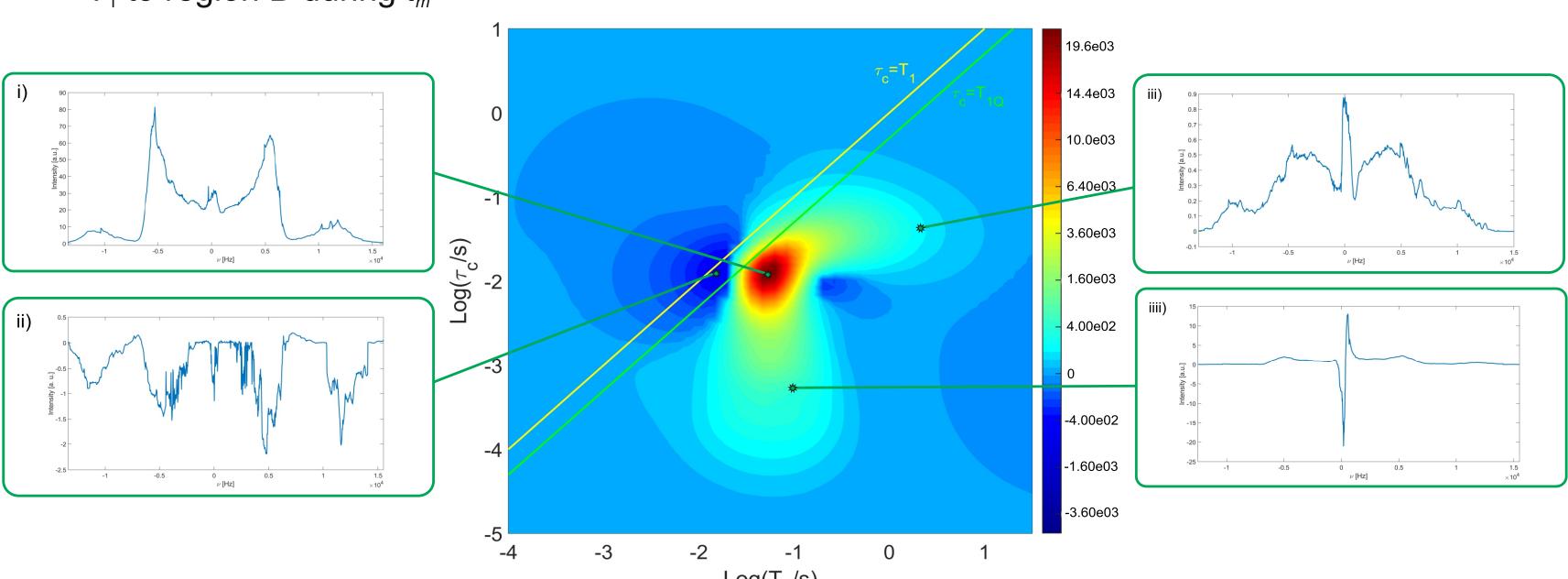
Static spectrum of LGPS (figure 3) shows spin 3/2 pake pattern despite of the high known Li mobility in the material

Estimated quadrupole coupling constant from residual quadrupole interaction $C_0 = 23 \text{ kHz}$

2D spin lattice - spin alignment correlation map (figure 4):

- Region A:
 - SAE decay rate below $1/T_{1Q}$ (τ_c can be quantified!)
 - Response from spins with different structural surrounding compared to B
- Region B:
 - SAE decay rate overlaps $1/T_{10}$, relaxation rate of pure quadrupolar order
 - No direct information about Li mobility accessible
- Contains distribution maximum Region C:
- Low amount of phosphour rich side phase, indicated by long spin lattice relaxation and the broadened spectrum
- Region D:
 - Negative components of the distribution indicate exchange of Li from region A during T_1 to region B during t_m




Figure 4: 2D-T₁/SAE correlation map of LGPS, recorded at room temperature Regions of different longitudinal relaxation (T₁) and Li-migration (τ_c) behavior of LGPS are labeled A-D. The parts in the distribution encircled by dashed ellipsoids have negativ signs. The yellow solid line marks data points with τ_c = and the green solid line marks $T_{10} = \tau_c/2$

 SAE powder pattern with dominant satellites and weak central component

Figure 3: Static 7Li NMR spectrum of LGPS, showing spin-3/2

powder Pake-like patterns with quadrupolar coupling constants

- Quadrupolar coupling constant almost similar to the static 'Li spectrum (figure 3)
- Almost zero intensity between inner and outer satellites as well as at both sides of the small central component
- Evidence for an orientation dependent spin-lattice relaxation

 $Log(T_1/s)$ Figure 5: 2D-T1/SAE correlation map of LGPS obtained from the sum of the 2D-point-by-point inversion. i)-iiii) denote selections of a respective

spectrum from the areas A -D. The yellow solid line marks data points with $\tau_c = T_1$ and the green solid line marks $T_{10} = \tau_c/2$

- Broader shaped features and narrower quadrupole splitting than spectrum i)
- Predominantely orthorombic
- Powder Pake-pattern with approximately identical splitting compared to spectrum i)
- Dispersive Lorentzian central component

The authors would like to thank Peter Jakes (IEK-9, Forschungszentrum Jülich) and Simone Köcher (IEK-9, Forschungszentrum Jülich and TU München) for fruitful discussions and support of the project. Funding from the Ministry of Innovation, Science and Research (MIWF) of the State of North Rhine-Westphalia through project "Ionic conductors for efficient energy storage" is gratefully acknowledged. Simulations were performed with computing resources granted by RWTH Aachen University under project rwth0204.

[1]M.C. Paulus et al. (2018), "Investigation of the Li-ion conduction behavior in the Li10GeP2S12 solid electrolyte by two-dimensional T1-spin alignment echo correlation NMR", Journal of Magnetic Resonance (In Press).

[2]Böhmer, R. (2000). "Multiple-Time Correlation Functions in Spin-3/2 Solid-State NMR Spectroscopy." Journal of Magnetic Resonance 147(1): 78-88. [3]Qi, F., et al. (2002). "Stimulated-Echo NMR Spectroscopy of 9Be and 7Li in Solids: Method and Application to Ion Conductors." Solid State Nuclear Magnetic Resonance 22(4): 484-500.

[4]Kamaya, Noriaki, et al. "A lithium superionic conductor." Nature materials 10.9 (2011): 682-686. [5] Jeener, J. and P. Broekaert, Nuclear Magnetic Resonance in Solids: Thermodynamic Effects of a Pair of rf Pulses. Physical Review, 1967. 157(2): p. 232-240. [6] Granwehr, Josef, and Peter J. Roberts. "Inverse Laplace transform of multidimensional relaxation data without non-negativity constraint." Journal of Chemical Theory and Computation 8.10 (2012): 3473-3482.