000851013 001__ 851013
000851013 005__ 20240610121333.0
000851013 0247_ $$2doi$$a10.1021/acsaem.8b00111
000851013 0247_ $$2WOS$$aWOS:000458706000002
000851013 0247_ $$2altmetric$$aaltmetric:45188249
000851013 037__ $$aFZJ-2018-04727
000851013 082__ $$a540
000851013 1001_ $$0P:(DE-HGF)0$$aXu, Junyuan$$b0
000851013 245__ $$aCluster Beam Deposition of Ultrafine Cobalt and Ruthenium Clusters for Efficient and Stable Oxygen Evolution Reaction
000851013 260__ $$aWashington, DC$$bACS Publications$$c2018
000851013 3367_ $$2DRIVER$$aarticle
000851013 3367_ $$2DataCite$$aOutput Types/Journal article
000851013 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1538986176_31674
000851013 3367_ $$2BibTeX$$aARTICLE
000851013 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851013 3367_ $$00$$2EndNote$$aJournal Article
000851013 520__ $$aUltrafine cobalt and ruthenium clusters are deposited on carbon paper substrates by cluster beam deposition using a matrix assembly cluster source and a pulsed microplasma cluster source, respectively. When used to catalyze the oxygen evolution reaction (OER), the cobalt and ruthenium clusters show electrocatalytic performance superior to the state-of-the-art Ru/C and RuO2 nanoparticle catalysts on both a mass and a specific-surface-area basis. Typically, the cobalt clusters can deliver 10 mA cm–2 at a low overpotential of 320 mV and show a small Tafel slope of 50 mV dec–1 and a mass-based turnover frequency of 0.01 s–1 at an overpotential of 300 mV, outperforming many cobalt-based OER catalysts
000851013 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000851013 588__ $$aDataset connected to CrossRef
000851013 7001_ $$0P:(DE-HGF)0$$aMurphy, Shane$$b1
000851013 7001_ $$00000-0002-4714-9019$$aXiong, Dehua$$b2
000851013 7001_ $$0P:(DE-HGF)0$$aCai, Rongsheng$$b3
000851013 7001_ $$0P:(DE-Juel1)145420$$aWei, Xian-Kui$$b4
000851013 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b5
000851013 7001_ $$0P:(DE-HGF)0$$aBarborini, Emanuele$$b6
000851013 7001_ $$0P:(DE-HGF)0$$aVinati, Simone$$b7
000851013 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b8
000851013 7001_ $$00000-0001-8728-8083$$aPalmer, Richard E.$$b9
000851013 7001_ $$00000-0003-2732-7399$$aLiu, Lifeng$$b10$$eCorresponding author
000851013 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.8b00111$$gVol. 1, no. 7, p. 3013 - 3018$$n7$$p3013 - 3018$$tACS applied energy materials$$v1$$x2574-0962$$y2018
000851013 8564_ $$uhttps://juser.fz-juelich.de/record/851013/files/acsaem.8b00111.pdf$$yRestricted
000851013 8564_ $$uhttps://juser.fz-juelich.de/record/851013/files/acsaem.8b00111.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851013 909CO $$ooai:juser.fz-juelich.de:851013$$pVDB
000851013 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145420$$aForschungszentrum Jülich$$b4$$kFZJ
000851013 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b5$$kFZJ
000851013 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b8$$kFZJ
000851013 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000851013 9141_ $$y2018
000851013 920__ $$lyes
000851013 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000851013 980__ $$ajournal
000851013 980__ $$aVDB
000851013 980__ $$aI:(DE-Juel1)PGI-5-20110106
000851013 980__ $$aUNRESTRICTED
000851013 981__ $$aI:(DE-Juel1)ER-C-1-20170209