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Sex classification by resting state connectivity 

Methods Introduction 
• Cognitive sex differences well documented in 

behavioral and functional brain imaging 
(fMRI). 

• Structural MRI has identified a structural 
sexual dimorphism of the human brain (3). 

• Sex differences are also found in resting 
state (RS) brain connectivity (e.g. 8, 11).  

Aims of the present study: 
1. Employ a machine learning approach on RS 

data to address generalizability of previous 
findings to independent samples.  

2. Delineate regionally specific brain networks 
underlying successful classification of novel 
subjects’ sex.  

3. Further understanding of a possible sexual 
dimorphism of the RS connectome.  

Samples:  
• Two mutually exclusive samples of unrelated 

subjects constructed of Human Connectome 
Project data (HCP S1200 release, (7)).  

• Sample 1:  434 subjects (217 males, age 
range: 22-37, mean age: 28.6 years), 

• Sample 2:  310 subjects (155 males, age 
range: 22-36, mean age: 28.5 years).  

• Males and females matched for age, twin-
status and education within each sample. 

Functional imaging data: 
• Resting state (RS): 1200 volumes per subject. 
• Siemens Skyra 3T scanner (TR=720ms). 
• Standard realignment and normalization. 
• FSL-FIX denoising (5). 
• Individual RS connectomes extracted for 436 

ROIs based on (6) . 

Results 

1 ROI based minimum classification 
accuracy across both samples 

Whole Brain Connectome 
• 10-fold cross-validation performance for 

whole brain connectome:  
• Sample 1: 79.3% 
• Sample 2: 78.8%.  

• Across sample classification performance:  
• 81.4%. 
(possibly due to larger training set) 
 

Whole brain RS connectome allows for  
the prediction of an unknown subject’s  
sex at ~ 80% accuracy! 

Regional Connectivity  
• ROI based analyses identified regions for 

which the connectivity profile differentiated 
most strongly between the sexes. 

• Highest regional accuracies: 
• Medial brain regions in anterior cingulate 

and cingulate gyrus.  
• Left lateralized inferior frontal gyrus and 

inferior temporal gyrus 
• Regions displaying top classification 

accuracies highly similar for within-sample 
and between-sample classification.  

Classification accuracies for top ROIs 
are only marginally lower than whole 
connectome analyses! 

Discussion 

Sex Classification:  
• Linear SVM (LibSVM toolbox, (1)) model for 

classification of subjects’ sex from RS 
connectome. 

• Nested optimization of cost parameter. 
• 10 repetitions of a 10-fold cross-validation. 
• Across sample classification:  fitting of the 

model on sample 1 and testing it on sample 2. 
 
Whole brain vs. ROI based classification: 
• (1) Whole brain connectome. 
• (2) Each individual ROI’s connectivity profile 

(436 parcels). 

Result Summary: 
• ROI based analyses performed separately for 

each sample and conservatively characterized 
by minimum across the two samples.  

 

• Both within- and between-sample cross-
validation allowed reliable classification of 
unknown subjects’ sex from RS connectivity 
profiles  robust sexual dimorphism of 
the resting state connectome. 

• Predictive power of local brain connectivity 
almost as high as whole brain connectivity  

  regionally specific effects. 
• Within- and between-sample prediction 

based on highly similar brain regions  
reliability of findings. 

• Regions with top prediction power are mainly 

    cognitive control of emotion (2,4). 
• Regions most clearly differentiating between 

the sexes are related to cognitive control of 
behaviour and emotion. 

• Findings might help explain why sex 
differences are mostly found in cognitive 
strategies employed by men and women, 
but not in behavioural performance per se. 

• Results substantiate a sexual dimorphism 
in RS connectivity   male and females 
differ not only in brain structure, but also in 
functional brain organization.  
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    located along (anterior) cingulate cortex. 
• Cort ical regions with top predict ion 

accuracies are left lateralized. 
• Left inferior frontal inter-hemispheric 

connectivity has been shown to vary 
across the menstrual cycle in women, but 
to remain stable in men (9).  

• Similar frontal regions reported in relation to 
differing cognitive strategies between the 
sexes (10). 

• Sex differences in cingulate cortex reported 
in connection with emotional reactivity and  

 

    (1) L Cingulate Gyrus, BA 24 (75.52%, 75.29%)  
• (2) L Ant Cingulate, BA 32 (74.32%, 74.56%)  
• (3) L Ant Cingulate, BA 24 (73.25%, 73.80%) 
• (4) R Cingulate Gyrus, BA 31 (73.25%, 73.19%) 
• (5) R Caudate (72.52%73.70%) 
• (6) L Inf Temporal G, BA 20 (72.38%, 73.60%) 
• (7) L Inf Frontal G, BA 47 (73.27%, 72.32%) 
• (8) R Inf Frontal G, BA 47 (72.32%, 72.60%) 
• (9) L Med Frontal G, BA 11 (73.13%, 72.31%) 
• (10) R Ant Cingulate, BA 24 (72.29%, 73.32%) 
 
 
 
 
 
- 
. 

Classification accuracy for the whole connectome analysis and the ten ROIs 
with highest classification accuracy across sample 1 and sample 2 

ROI based classification accuracy 
for between-sample classification 
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