000851051 001__ 851051
000851051 005__ 20240313095012.0
000851051 0247_ $$2doi$$a10.3389/fnins.2018.00528
000851051 0247_ $$2Handle$$a2128/19758
000851051 0247_ $$2pmid$$apmid:30323734
000851051 0247_ $$2WOS$$aWOS:000445926200001
000851051 0247_ $$2altmetric$$aaltmetric:45061175
000851051 037__ $$aFZJ-2018-04764
000851051 082__ $$a610
000851051 1001_ $$0P:(DE-Juel1)156326$$aBachmann, Claudia$$b0$$eCorresponding author
000851051 245__ $$aOn the Extraction and Analysis of Graphs From Resting-State fMRI to Support a Correct and Robust Diagnostic Tool for Alzheimer's Disease
000851051 260__ $$aLausanne$$bFrontiers Research Foundation$$c2018
000851051 3367_ $$2DRIVER$$aarticle
000851051 3367_ $$2DataCite$$aOutput Types/Journal article
000851051 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568968807_23433
000851051 3367_ $$2BibTeX$$aARTICLE
000851051 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851051 3367_ $$00$$2EndNote$$aJournal Article
000851051 520__ $$aThe diagnosis of Alzheimer's disease (AD), especially in the early stage, is still not very reliable and the development of new diagnosis tools is desirable. A diagnosis based on functional magnetic resonance imaging (fMRI) is a suitable candidate, since fMRI is non-invasive, readily available, and indirectly measures synaptic dysfunction, which can be observed even at the earliest stages of AD. However, the results of previous attempts to analyze graph properties of resting state fMRI data are contradictory, presumably caused by methodological differences in graph construction. This comprises two steps: clustering the voxels of the functional image to define the nodes of the graph, and calculating the graph's edge weights based on a functional connectivity measure of the average cluster activities. A variety of methods are available for each step, but the robustness of results to method choice, and the suitability of the methods to support a diagnostic tool, are largely unknown. To address this issue, we employ a range of commonly and rarely used clustering and edge definition methods and analyze their graph theoretic measures (graph weight, shortest path length, clustering coefficient, and weighted degree distribution and modularity) on a small data set of 26 healthy controls, 16 subjects with mild cognitive impairment (MCI) and 14 with Alzheimer's disease. We examine the results with respect to statistical significance of the mean difference in graph properties, the sensitivity of the results to model and parameter choices, and relative diagnostic power based on both a statistical model and support vector machines. We find that different combinations of graph construction techniques yield contradicting, but statistically significant, relations of graph properties between health conditions, explaining the discrepancy across previous studies, but casting doubt on such analyses as a method to gain insight into disease effects. The production of significant differences in mean graph properties turns out not to be a good predictor of future diagnostic capacity. Highest predictive power, expressed by largest negative surprise values, are achieved for both atlas-driven and data-driven clustering (Ward clustering), as long as graphs are small and clusters large, in combination with edge definitions based on correlations and mutual information transfer.
000851051 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000851051 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x1
000851051 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x2
000851051 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x3
000851051 536__ $$0G:(GEPRIS)233510988$$aDFG project 233510988 - Mathematische Modellierung der Entstehung und Suppression pathologischer Aktivitätszustände in den Basalganglien-Kortex-Schleifen (233510988)$$c233510988$$x4
000851051 588__ $$aDataset connected to CrossRef
000851051 7001_ $$0P:(DE-HGF)0$$aJacobs, Heidi I. L.$$b1
000851051 7001_ $$0P:(DE-HGF)0$$aPorta Mana, PierGianLuca$$b2
000851051 7001_ $$0P:(DE-Juel1)136676$$aDillen, Kim$$b3
000851051 7001_ $$0P:(DE-Juel1)167565$$aRichter, Nils$$b4
000851051 7001_ $$0P:(DE-Juel1)156372$$avon Reutern, Boris$$b5
000851051 7001_ $$0P:(DE-Juel1)162382$$aDronse, Julian$$b6
000851051 7001_ $$0P:(DE-HGF)0$$aOnur, Oezguer A.$$b7
000851051 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b8
000851051 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b9
000851051 7001_ $$0P:(DE-Juel1)131730$$aKukolja, Juraj$$b10
000851051 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b11
000851051 773__ $$0PERI:(DE-600)2411902-7$$a10.3389/fnins.2018.00528$$gVol. 12, p. 528$$p528$$tFrontiers in neuroscience$$v12$$x1662-453X$$y2018
000851051 8564_ $$uhttps://juser.fz-juelich.de/record/851051/files/2018-0115008-3.pdf
000851051 8564_ $$uhttps://juser.fz-juelich.de/record/851051/files/2018-0115008-3.gif?subformat=icon$$xicon
000851051 8564_ $$uhttps://juser.fz-juelich.de/record/851051/files/2018-0115008-3.jpg?subformat=icon-1440$$xicon-1440
000851051 8564_ $$uhttps://juser.fz-juelich.de/record/851051/files/2018-0115008-3.jpg?subformat=icon-180$$xicon-180
000851051 8564_ $$uhttps://juser.fz-juelich.de/record/851051/files/2018-0115008-3.jpg?subformat=icon-640$$xicon-640
000851051 8564_ $$uhttps://juser.fz-juelich.de/record/851051/files/fnins-12-00528.pdf$$yOpenAccess
000851051 8564_ $$uhttps://juser.fz-juelich.de/record/851051/files/fnins-12-00528.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000851051 8767_ $$82018-0115008-3$$92018-08-06$$d2018-08-10$$eAPC$$jDeposit$$lDeposit: Frontiers$$z2256.75 USD
000851051 909CO $$ooai:juser.fz-juelich.de:851051$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000851051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156326$$aForschungszentrum Jülich$$b0$$kFZJ
000851051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136676$$aForschungszentrum Jülich$$b3$$kFZJ
000851051 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)136676$$a INM-3$$b3
000851051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167565$$aForschungszentrum Jülich$$b4$$kFZJ
000851051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156372$$aForschungszentrum Jülich$$b5$$kFZJ
000851051 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)156372$$a INM-3$$b5
000851051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162382$$aForschungszentrum Jülich$$b6$$kFZJ
000851051 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)162382$$a INM-3$$b6
000851051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b7$$kFZJ
000851051 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a INM-3$$b7
000851051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b8$$kFZJ
000851051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b9$$kFZJ
000851051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131730$$aForschungszentrum Jülich$$b10$$kFZJ
000851051 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b11$$kFZJ
000851051 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000851051 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x1
000851051 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x2
000851051 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x3
000851051 9141_ $$y2018
000851051 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851051 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000851051 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000851051 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROSCI-SWITZ : 2015
000851051 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000851051 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000851051 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851051 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851051 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851051 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851051 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000851051 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851051 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851051 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x0
000851051 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x1
000851051 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x2
000851051 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x3
000851051 9801_ $$aAPC
000851051 9801_ $$aFullTexts
000851051 980__ $$ajournal
000851051 980__ $$aVDB
000851051 980__ $$aI:(DE-82)080010_20140620
000851051 980__ $$aI:(DE-Juel1)INM-6-20090406
000851051 980__ $$aI:(DE-Juel1)INM-4-20090406
000851051 980__ $$aI:(DE-Juel1)INM-3-20090406
000851051 980__ $$aAPC
000851051 980__ $$aUNRESTRICTED
000851051 981__ $$aI:(DE-Juel1)IAS-6-20130828