001     851051
005     20240313095012.0
024 7 _ |a 10.3389/fnins.2018.00528
|2 doi
024 7 _ |a 2128/19758
|2 Handle
024 7 _ |a pmid:30323734
|2 pmid
024 7 _ |a WOS:000445926200001
|2 WOS
024 7 _ |a altmetric:45061175
|2 altmetric
037 _ _ |a FZJ-2018-04764
082 _ _ |a 610
100 1 _ |a Bachmann, Claudia
|0 P:(DE-Juel1)156326
|b 0
|e Corresponding author
245 _ _ |a On the Extraction and Analysis of Graphs From Resting-State fMRI to Support a Correct and Robust Diagnostic Tool for Alzheimer's Disease
260 _ _ |a Lausanne
|c 2018
|b Frontiers Research Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1568968807_23433
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The diagnosis of Alzheimer's disease (AD), especially in the early stage, is still not very reliable and the development of new diagnosis tools is desirable. A diagnosis based on functional magnetic resonance imaging (fMRI) is a suitable candidate, since fMRI is non-invasive, readily available, and indirectly measures synaptic dysfunction, which can be observed even at the earliest stages of AD. However, the results of previous attempts to analyze graph properties of resting state fMRI data are contradictory, presumably caused by methodological differences in graph construction. This comprises two steps: clustering the voxels of the functional image to define the nodes of the graph, and calculating the graph's edge weights based on a functional connectivity measure of the average cluster activities. A variety of methods are available for each step, but the robustness of results to method choice, and the suitability of the methods to support a diagnostic tool, are largely unknown. To address this issue, we employ a range of commonly and rarely used clustering and edge definition methods and analyze their graph theoretic measures (graph weight, shortest path length, clustering coefficient, and weighted degree distribution and modularity) on a small data set of 26 healthy controls, 16 subjects with mild cognitive impairment (MCI) and 14 with Alzheimer's disease. We examine the results with respect to statistical significance of the mean difference in graph properties, the sensitivity of the results to model and parameter choices, and relative diagnostic power based on both a statistical model and support vector machines. We find that different combinations of graph construction techniques yield contradicting, but statistically significant, relations of graph properties between health conditions, explaining the discrepancy across previous studies, but casting doubt on such analyses as a method to gain insight into disease effects. The production of significant differences in mean graph properties turns out not to be a good predictor of future diagnostic capacity. Highest predictive power, expressed by largest negative surprise values, are achieved for both atlas-driven and data-driven clustering (Ward clustering), as long as graphs are small and clusters large, in combination with edge definitions based on correlations and mutual information transfer.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|x 0
|f POF III
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|x 1
|f POF III
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|x 2
|f POF III
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|x 3
|f POF III
536 _ _ |a DFG project 233510988 - Mathematische Modellierung der Entstehung und Suppression pathologischer Aktivitätszustände in den Basalganglien-Kortex-Schleifen (233510988)
|0 G:(GEPRIS)233510988
|c 233510988
|x 4
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jacobs, Heidi I. L.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Porta Mana, PierGianLuca
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Dillen, Kim
|0 P:(DE-Juel1)136676
|b 3
700 1 _ |a Richter, Nils
|0 P:(DE-Juel1)167565
|b 4
700 1 _ |a von Reutern, Boris
|0 P:(DE-Juel1)156372
|b 5
700 1 _ |a Dronse, Julian
|0 P:(DE-Juel1)162382
|b 6
700 1 _ |a Onur, Oezguer A.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 8
700 1 _ |a Fink, Gereon Rudolf
|0 P:(DE-Juel1)131720
|b 9
700 1 _ |a Kukolja, Juraj
|0 P:(DE-Juel1)131730
|b 10
700 1 _ |a Morrison, Abigail
|0 P:(DE-Juel1)151166
|b 11
773 _ _ |a 10.3389/fnins.2018.00528
|g Vol. 12, p. 528
|0 PERI:(DE-600)2411902-7
|p 528
|t Frontiers in neuroscience
|v 12
|y 2018
|x 1662-453X
856 4 _ |u https://juser.fz-juelich.de/record/851051/files/2018-0115008-3.pdf
856 4 _ |u https://juser.fz-juelich.de/record/851051/files/2018-0115008-3.gif?subformat=icon
|x icon
856 4 _ |u https://juser.fz-juelich.de/record/851051/files/2018-0115008-3.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/851051/files/2018-0115008-3.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/851051/files/2018-0115008-3.jpg?subformat=icon-640
|x icon-640
856 4 _ |u https://juser.fz-juelich.de/record/851051/files/fnins-12-00528.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/851051/files/fnins-12-00528.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:851051
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156326
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)136676
910 1 _ |a INM-3
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)136676
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)167565
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156372
910 1 _ |a INM-3
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-Juel1)156372
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)162382
910 1 _ |a INM-3
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-Juel1)162382
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-HGF)0
910 1 _ |a INM-3
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131730
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)151166
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 3
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT NEUROSCI-SWITZ : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 0
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 2
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 3
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21