000851057 001__ 851057
000851057 005__ 20220930130155.0
000851057 0247_ $$2doi$$a10.3389/fpls.2018.01168
000851057 0247_ $$2Handle$$a2128/19627
000851057 0247_ $$2pmid$$apmid:30174677
000851057 0247_ $$2WOS$$aWOS:000441883100001
000851057 0247_ $$2altmetric$$aaltmetric:46799729
000851057 037__ $$aFZJ-2018-04770
000851057 041__ $$aEnglish
000851057 082__ $$a570
000851057 1001_ $$0P:(DE-Juel1)165155$$aArsova, Borjana$$b0$$eCorresponding author$$ufzj
000851057 245__ $$aMonitoring of Plant Protein Post-translational Modifications Using Targeted Proteomics
000851057 260__ $$aLausanne$$bFrontiers Media$$c2018
000851057 3367_ $$2DRIVER$$aarticle
000851057 3367_ $$2DataCite$$aOutput Types/Journal article
000851057 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536150378_464
000851057 3367_ $$2BibTeX$$aARTICLE
000851057 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851057 3367_ $$00$$2EndNote$$aJournal Article
000851057 520__ $$aProtein posttranslational modifications (PTMs) are among the fastest and earliest of plant responses to changes in the environment, making the mechanisms and dynamics of PTMs an important area of plant science. One of the most studied PTMs is protein phosphorylation. This review summarizes the use of targeted proteomics for the elucidation of the biological functioning of plant PTMs, and focuses primarily on phosphorylation. Since phosphorylated peptides have a low abundance, usually complex enrichment protocols are required for their research. Initial identification is usually performed with discovery phosphoproteomics, using high sensitivity mass spectrometers, where as many phosphopeptides are measured as possible. Once a PTM site is identified, biological characterization can be addressed with targeted proteomics. In targeted proteomics, Selected/Multiple Reaction Monitoring (S/MRM) is traditionally coupled to simple, standard protein digestion protocols, often omitting the enrichment step, and relying on triple-quadruple mass spectrometer. The use of synthetic peptides as internal standards allows accurate identification, avoiding cross-reactivity typical for some antibody based approaches. Importantly, internal standards allow absolute peptide quantitation, reported down to 0.1 femtomoles, also useful for determination of phospho-site occupancy. S/MRM is advantageous in situations where monitoring and diagnostics of peptide PTM status is needed for many samples, as it has faster sample processing times, higher throughput than other approaches, and excellent quantitation and reproducibility. Furthermore, the number of publicly available data-bases with plant PTM discovery data is growing, facilitating selection of modified peptides and design of targeted proteomics workflows. Recent instrument developments result in faster scanning times, inclusion of ion-trap instruments leading to parallel reaction monitoring- which further facilitates S/MRM experimental design. Finally, recent combination of data independent and data dependent spectra acquisition means that in addition to anticipated targeted data, spectra can now be queried for unanticipated information. The potential for future applications in plant biology is outlined.
000851057 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000851057 7001_ $$0P:(DE-Juel1)166460$$aWatt, Michelle$$b1$$ufzj
000851057 7001_ $$0P:(DE-Juel1)145719$$aUsadel, Björn$$b2$$ufzj
000851057 773__ $$0PERI:(DE-600)2613694-6$$a10.3389/fpls.2018.01168$$p1168$$tFrontiers in plant science$$vVol. 9$$x1664-462X$$y2018
000851057 8564_ $$uhttps://juser.fz-juelich.de/record/851057/files/2018-0121142-6.pdf
000851057 8564_ $$uhttps://juser.fz-juelich.de/record/851057/files/2018-0121142-6.gif?subformat=icon$$xicon
000851057 8564_ $$uhttps://juser.fz-juelich.de/record/851057/files/2018-0121142-6.jpg?subformat=icon-1440$$xicon-1440
000851057 8564_ $$uhttps://juser.fz-juelich.de/record/851057/files/2018-0121142-6.jpg?subformat=icon-180$$xicon-180
000851057 8564_ $$uhttps://juser.fz-juelich.de/record/851057/files/2018-0121142-6.jpg?subformat=icon-640$$xicon-640
000851057 8564_ $$uhttps://juser.fz-juelich.de/record/851057/files/fpls-09-01168.pdf$$yOpenAccess
000851057 8564_ $$uhttps://juser.fz-juelich.de/record/851057/files/fpls-09-01168.gif?subformat=icon$$xicon$$yOpenAccess
000851057 8564_ $$uhttps://juser.fz-juelich.de/record/851057/files/fpls-09-01168.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000851057 8564_ $$uhttps://juser.fz-juelich.de/record/851057/files/fpls-09-01168.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000851057 8564_ $$uhttps://juser.fz-juelich.de/record/851057/files/fpls-09-01168.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000851057 8564_ $$uhttps://juser.fz-juelich.de/record/851057/files/fpls-09-01168.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000851057 8767_ $$82018-0121142-6$$92018-08-06$$d2018-08-10$$eAPC$$jDeposit$$lDeposit: Frontiers$$z1572.50 USD
000851057 909CO $$ooai:juser.fz-juelich.de:851057$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000851057 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851057 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000851057 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000851057 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT PLANT SCI : 2015
000851057 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000851057 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000851057 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851057 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851057 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851057 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851057 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000851057 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000851057 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851057 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851057 9141_ $$y2018
000851057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165155$$aForschungszentrum Jülich$$b0$$kFZJ
000851057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166460$$aForschungszentrum Jülich$$b1$$kFZJ
000851057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145719$$aForschungszentrum Jülich$$b2$$kFZJ
000851057 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000851057 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000851057 980__ $$ajournal
000851057 980__ $$aVDB
000851057 980__ $$aUNRESTRICTED
000851057 980__ $$aI:(DE-Juel1)IBG-2-20101118
000851057 980__ $$aAPC
000851057 9801_ $$aAPC
000851057 9801_ $$aFullTexts