000851083 001__ 851083
000851083 005__ 20210129234729.0
000851083 0247_ $$2doi$$a10.1007/s00429-018-1727-9
000851083 0247_ $$2ISSN$$a0340-2061
000851083 0247_ $$2ISSN$$a1432-0568
000851083 0247_ $$2ISSN$$a1863-2653
000851083 0247_ $$2ISSN$$a1863-2661
000851083 0247_ $$2pmid$$apmid:30083997
000851083 0247_ $$2WOS$$aWOS:000447977600020
000851083 037__ $$aFZJ-2018-04791
000851083 082__ $$a610
000851083 1001_ $$0P:(DE-HGF)0$$aChen, Taolin$$b0
000851083 245__ $$aA domain-general brain network underlying emotional and cognitive interference processing: evidence from coordinate-based and functional connectivity meta-analyses
000851083 260__ $$aBerlin$$bSpringer$$c2018
000851083 3367_ $$2DRIVER$$aarticle
000851083 3367_ $$2DataCite$$aOutput Types/Journal article
000851083 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1540476933_25454
000851083 3367_ $$2BibTeX$$aARTICLE
000851083 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851083 3367_ $$00$$2EndNote$$aJournal Article
000851083 520__ $$aThe inability to control or inhibit emotional distractors characterizes a range of psychiatric disorders. Despite the use of a variety of task paradigms to determine the mechanisms underlying the control of emotional interference, a precise characterization of the brain regions and networks that support emotional interference processing remains elusive. Here, we performed coordinate-based and functional connectivity meta-analyses to determine the brain networks underlying emotional interference. Paradigms addressing interference processing in the cognitive or emotional domain were included in the meta-analyses, particularly the Stroop, Flanker, and Simon tasks. Our results revealed a consistent involvement of the bilateral dorsal anterior cingulate cortex, anterior insula, left inferior frontal gyrus, and superior parietal lobule during emotional interference. Follow-up conjunction analyses identified correspondence in these regions between emotional and cognitive interference processing. Finally, the patterns of functional connectivity of these regions were examined using resting-state functional connectivity and meta-analytic connectivity modeling. These regions were strongly connected as a distributed system, primarily mapping onto fronto-parietal control, ventral attention, and dorsal attention networks. Together, the present findings indicate that a domain-general neural system is engaged across multiple types of interference processing and that regulating emotional and cognitive interference depends on interactions between large-scale distributed brain networks.
000851083 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000851083 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x1
000851083 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x2
000851083 588__ $$aDataset connected to CrossRef
000851083 7001_ $$0P:(DE-HGF)0$$aBecker, Benjamin$$b1
000851083 7001_ $$0P:(DE-Juel1)172024$$aCamilleri, Julia$$b2$$ufzj
000851083 7001_ $$0P:(DE-HGF)0$$aWang, Li$$b3
000851083 7001_ $$0P:(DE-HGF)0$$aYu, Shuqi$$b4
000851083 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b5$$ufzj
000851083 7001_ $$0P:(DE-HGF)0$$aFeng, Chunliang$$b6$$eCorresponding author
000851083 773__ $$0PERI:(DE-600)2303775-1$$a10.1007/s00429-018-1727-9$$n8$$p3813–3840$$tBrain structure & function$$v223$$x1863-2661$$y-
000851083 8564_ $$uhttps://juser.fz-juelich.de/record/851083/files/Chen2018_Article_ADomain-generalBrainNetworkUnd-1.pdf$$yRestricted
000851083 8564_ $$uhttps://juser.fz-juelich.de/record/851083/files/Chen2018_Article_ADomain-generalBrainNetworkUnd-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851083 909CO $$ooai:juser.fz-juelich.de:851083$$pec_fundedresources$$pVDB$$popenaire
000851083 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172024$$aForschungszentrum Jülich$$b2$$kFZJ
000851083 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b5$$kFZJ
000851083 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000851083 9141_ $$y2018
000851083 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851083 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851083 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000851083 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851083 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851083 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN STRUCT FUNCT : 2015
000851083 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851083 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851083 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851083 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851083 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000851083 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000851083 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000851083 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBRAIN STRUCT FUNCT : 2015
000851083 920__ $$lyes
000851083 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000851083 980__ $$ajournal
000851083 980__ $$aVDB
000851083 980__ $$aI:(DE-Juel1)INM-7-20090406
000851083 980__ $$aUNRESTRICTED