Hauptseite > Publikationsdatenbank > A room-temperature full-ceramic sodium-ion battery based on Na3+xZr2Si2+xP1-xO12 as sodium superionic conductor > print |
001 | 851085 | ||
005 | 20240708132850.0 | ||
037 | _ | _ | |a FZJ-2018-04793 |
100 | 1 | _ | |a Ma, Qianli |0 P:(DE-Juel1)129628 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a 12th International Conference on Ceramic Materials and Components for Energy and Environmental Applications |c Singapore |d 2018-07-22 - 2018-07-27 |w Singapore |
245 | _ | _ | |a A room-temperature full-ceramic sodium-ion battery based on Na3+xZr2Si2+xP1-xO12 as sodium superionic conductor |
260 | _ | _ | |c 2018 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1536673801_12669 |2 PUB:(DE-HGF) |x Invited |
520 | _ | _ | |a Despite of huge efforts, the lack of suitable candidate for electrolytes still impedes the development of all-solid-state Na batteries. Na3+xZr2Si2+xP1-xO12 (-0.2 ≤ x ≤ 0.2) are the very first composition series of NASICONs discovered 40 years ago and were reported having a total Na-ion conductivity of ~10-4 S cm-1 at room temperature. In the present study, this composition series is reconsidered and the focusing range of stoichiometry has been varied from x = 0 to x = 0.6. A solution-assisted solid-state reaction method is applied for powder preparation. Surprisingly, a total conductivity of over 5 × 10-3 S cm-1 is achieved for Na3.4Zr2Si2.4P0.6O12 at 25 °C, which is the best value of all reported polycrystalline Na-ion conductors. A bulk conductivity of about 1.5 × 10-2 S cm-1 is also revealed by high frequency impedance spectroscopy up to 3 GHz for Na3.4Zr2Si2.4P0.6O12 at 25 °C. The parameters influencing the total conductivity are discussed in detail. Benefitted from the superior total conductivity of Na3.4Zr2Si2.4P0.6O12, a full-ceramic cell has been fabricated and tested at 28 °C with good cycling performance. To our knowledge, this is the first full ceramic Na-ion battery which has been operated at room temperature. |
536 | _ | _ | |a 131 - Electrochemical Storage (POF3-131) |0 G:(DE-HGF)POF3-131 |c POF3-131 |f POF III |x 0 |
536 | _ | _ | |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602) |0 G:(DE-Juel1)SOFC-20140602 |c SOFC-20140602 |f SOFC |x 1 |
700 | 1 | _ | |a Tsai, Chih-Long |0 P:(DE-Juel1)156244 |b 1 |u fzj |
700 | 1 | _ | |a Tietz, Frank |0 P:(DE-Juel1)129667 |b 2 |u fzj |
909 | C | O | |o oai:juser.fz-juelich.de:851085 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)129628 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)156244 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129667 |
913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |2 G:(DE-HGF)POF3-100 |v Electrochemical Storage |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2018 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|