000851107 001__ 851107
000851107 005__ 20240712113110.0
000851107 0247_ $$2doi$$a10.1016/j.carbon.2017.11.065
000851107 0247_ $$2ISSN$$a0008-6223
000851107 0247_ $$2ISSN$$a1873-3891
000851107 0247_ $$2WOS$$aWOS:000418479900018
000851107 037__ $$aFZJ-2018-04809
000851107 082__ $$a540
000851107 1001_ $$0P:(DE-HGF)0$$aFromm, Olga$$b0
000851107 245__ $$aCarbons from biomass precursors as anode materials for lithium ion batteries: New insights into carbonization and graphitization behavior and into their correlation to electrochemical performance
000851107 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000851107 3367_ $$2DRIVER$$aarticle
000851107 3367_ $$2DataCite$$aOutput Types/Journal article
000851107 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534246056_7415
000851107 3367_ $$2BibTeX$$aARTICLE
000851107 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851107 3367_ $$00$$2EndNote$$aJournal Article
000851107 520__ $$aWe report a comprehensive and systematic study on the preparation and characterization of carbonaceous materials that are obtained from five different sustainable precursor materials and petroleum coke as reference material, particularly focusing on the correlation between the structural transformation of the precursors into carbons in dependence of heat treatment temperature (HTT) and their corresponding electrochemical characteristics as anode material in lithium ion batteries. The carbons were carbonized and graphitized in 200 °C steps, covering a broad temperature range from 800 °C to 2800 °C. So far, such a systematic synthesis approach has not been reported in literature. For biomass-derived carbons, we found a heterogeneous (discontinuous) graphitization process, i.e. a transformation from the amorphous to the graphitic phase via the turbostratic phase. A general trend was observed for the discharge capacity, i.e. a decrease of capacity from 800 °C to ≈1800–2000 °C, followed by an increase of capacity for temperatures >2000 °C. An increase of the 1st cyle Coulombic efficiency was found and could be directly correlated to the decrease of the “non-basal plane” surface area upon HTT. In addition, we found that the voltage efficiency and energy efficiency of the different carbons also increase with rising treatment temperatures.
000851107 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851107 588__ $$aDataset connected to CrossRef
000851107 7001_ $$0P:(DE-HGF)0$$aHeckmann, Andreas$$b1
000851107 7001_ $$0P:(DE-HGF)0$$aRodehorst, Uta C.$$b2
000851107 7001_ $$0P:(DE-HGF)0$$aFrerichs, Joop$$b3
000851107 7001_ $$0P:(DE-HGF)0$$aBecker, Dina$$b4
000851107 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b5$$eCorresponding author$$ufzj
000851107 7001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b6$$eCorresponding author
000851107 773__ $$0PERI:(DE-600)2014715-6$$a10.1016/j.carbon.2017.11.065$$gVol. 128, p. 147 - 163$$p147 - 163$$tCarbon$$v128$$x0008-6223$$y2018
000851107 8564_ $$uhttps://juser.fz-juelich.de/record/851107/files/1-s2.0-S000862231731179X-main.pdf$$yRestricted
000851107 8564_ $$uhttps://juser.fz-juelich.de/record/851107/files/1-s2.0-S000862231731179X-main.gif?subformat=icon$$xicon$$yRestricted
000851107 8564_ $$uhttps://juser.fz-juelich.de/record/851107/files/1-s2.0-S000862231731179X-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000851107 8564_ $$uhttps://juser.fz-juelich.de/record/851107/files/1-s2.0-S000862231731179X-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000851107 8564_ $$uhttps://juser.fz-juelich.de/record/851107/files/1-s2.0-S000862231731179X-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000851107 8564_ $$uhttps://juser.fz-juelich.de/record/851107/files/1-s2.0-S000862231731179X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851107 909CO $$ooai:juser.fz-juelich.de:851107$$pVDB
000851107 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b5$$kFZJ
000851107 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851107 9141_ $$y2018
000851107 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCARBON : 2015
000851107 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851107 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851107 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851107 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851107 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851107 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851107 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851107 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851107 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851107 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCARBON : 2015
000851107 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000851107 980__ $$ajournal
000851107 980__ $$aVDB
000851107 980__ $$aI:(DE-Juel1)IEK-12-20141217
000851107 980__ $$aUNRESTRICTED
000851107 981__ $$aI:(DE-Juel1)IMD-4-20141217