000851107 001__ 851107 000851107 005__ 20240712113110.0 000851107 0247_ $$2doi$$a10.1016/j.carbon.2017.11.065 000851107 0247_ $$2ISSN$$a0008-6223 000851107 0247_ $$2ISSN$$a1873-3891 000851107 0247_ $$2WOS$$aWOS:000418479900018 000851107 037__ $$aFZJ-2018-04809 000851107 082__ $$a540 000851107 1001_ $$0P:(DE-HGF)0$$aFromm, Olga$$b0 000851107 245__ $$aCarbons from biomass precursors as anode materials for lithium ion batteries: New insights into carbonization and graphitization behavior and into their correlation to electrochemical performance 000851107 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018 000851107 3367_ $$2DRIVER$$aarticle 000851107 3367_ $$2DataCite$$aOutput Types/Journal article 000851107 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534246056_7415 000851107 3367_ $$2BibTeX$$aARTICLE 000851107 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000851107 3367_ $$00$$2EndNote$$aJournal Article 000851107 520__ $$aWe report a comprehensive and systematic study on the preparation and characterization of carbonaceous materials that are obtained from five different sustainable precursor materials and petroleum coke as reference material, particularly focusing on the correlation between the structural transformation of the precursors into carbons in dependence of heat treatment temperature (HTT) and their corresponding electrochemical characteristics as anode material in lithium ion batteries. The carbons were carbonized and graphitized in 200 °C steps, covering a broad temperature range from 800 °C to 2800 °C. So far, such a systematic synthesis approach has not been reported in literature. For biomass-derived carbons, we found a heterogeneous (discontinuous) graphitization process, i.e. a transformation from the amorphous to the graphitic phase via the turbostratic phase. A general trend was observed for the discharge capacity, i.e. a decrease of capacity from 800 °C to ≈1800–2000 °C, followed by an increase of capacity for temperatures >2000 °C. An increase of the 1st cyle Coulombic efficiency was found and could be directly correlated to the decrease of the “non-basal plane” surface area upon HTT. In addition, we found that the voltage efficiency and energy efficiency of the different carbons also increase with rising treatment temperatures. 000851107 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000851107 588__ $$aDataset connected to CrossRef 000851107 7001_ $$0P:(DE-HGF)0$$aHeckmann, Andreas$$b1 000851107 7001_ $$0P:(DE-HGF)0$$aRodehorst, Uta C.$$b2 000851107 7001_ $$0P:(DE-HGF)0$$aFrerichs, Joop$$b3 000851107 7001_ $$0P:(DE-HGF)0$$aBecker, Dina$$b4 000851107 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b5$$eCorresponding author$$ufzj 000851107 7001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b6$$eCorresponding author 000851107 773__ $$0PERI:(DE-600)2014715-6$$a10.1016/j.carbon.2017.11.065$$gVol. 128, p. 147 - 163$$p147 - 163$$tCarbon$$v128$$x0008-6223$$y2018 000851107 8564_ $$uhttps://juser.fz-juelich.de/record/851107/files/1-s2.0-S000862231731179X-main.pdf$$yRestricted 000851107 8564_ $$uhttps://juser.fz-juelich.de/record/851107/files/1-s2.0-S000862231731179X-main.gif?subformat=icon$$xicon$$yRestricted 000851107 8564_ $$uhttps://juser.fz-juelich.de/record/851107/files/1-s2.0-S000862231731179X-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000851107 8564_ $$uhttps://juser.fz-juelich.de/record/851107/files/1-s2.0-S000862231731179X-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000851107 8564_ $$uhttps://juser.fz-juelich.de/record/851107/files/1-s2.0-S000862231731179X-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000851107 8564_ $$uhttps://juser.fz-juelich.de/record/851107/files/1-s2.0-S000862231731179X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000851107 909CO $$ooai:juser.fz-juelich.de:851107$$pVDB 000851107 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b5$$kFZJ 000851107 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000851107 9141_ $$y2018 000851107 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCARBON : 2015 000851107 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000851107 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000851107 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000851107 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000851107 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000851107 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000851107 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000851107 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000851107 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000851107 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCARBON : 2015 000851107 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 000851107 980__ $$ajournal 000851107 980__ $$aVDB 000851107 980__ $$aI:(DE-Juel1)IEK-12-20141217 000851107 980__ $$aUNRESTRICTED 000851107 981__ $$aI:(DE-Juel1)IMD-4-20141217