001     851107
005     20240712113110.0
024 7 _ |a 10.1016/j.carbon.2017.11.065
|2 doi
024 7 _ |a 0008-6223
|2 ISSN
024 7 _ |a 1873-3891
|2 ISSN
024 7 _ |a WOS:000418479900018
|2 WOS
037 _ _ |a FZJ-2018-04809
082 _ _ |a 540
100 1 _ |a Fromm, Olga
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Carbons from biomass precursors as anode materials for lithium ion batteries: New insights into carbonization and graphitization behavior and into their correlation to electrochemical performance
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1534246056_7415
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report a comprehensive and systematic study on the preparation and characterization of carbonaceous materials that are obtained from five different sustainable precursor materials and petroleum coke as reference material, particularly focusing on the correlation between the structural transformation of the precursors into carbons in dependence of heat treatment temperature (HTT) and their corresponding electrochemical characteristics as anode material in lithium ion batteries. The carbons were carbonized and graphitized in 200 °C steps, covering a broad temperature range from 800 °C to 2800 °C. So far, such a systematic synthesis approach has not been reported in literature. For biomass-derived carbons, we found a heterogeneous (discontinuous) graphitization process, i.e. a transformation from the amorphous to the graphitic phase via the turbostratic phase. A general trend was observed for the discharge capacity, i.e. a decrease of capacity from 800 °C to ≈1800–2000 °C, followed by an increase of capacity for temperatures >2000 °C. An increase of the 1st cyle Coulombic efficiency was found and could be directly correlated to the decrease of the “non-basal plane” surface area upon HTT. In addition, we found that the voltage efficiency and energy efficiency of the different carbons also increase with rising treatment temperatures.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Heckmann, Andreas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rodehorst, Uta C.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Frerichs, Joop
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Becker, Dina
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 5
|e Corresponding author
|u fzj
700 1 _ |a Placke, Tobias
|0 0000-0002-2097-5193
|b 6
|e Corresponding author
773 _ _ |a 10.1016/j.carbon.2017.11.065
|g Vol. 128, p. 147 - 163
|0 PERI:(DE-600)2014715-6
|p 147 - 163
|t Carbon
|v 128
|y 2018
|x 0008-6223
856 4 _ |u https://juser.fz-juelich.de/record/851107/files/1-s2.0-S000862231731179X-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851107/files/1-s2.0-S000862231731179X-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851107/files/1-s2.0-S000862231731179X-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851107/files/1-s2.0-S000862231731179X-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851107/files/1-s2.0-S000862231731179X-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851107/files/1-s2.0-S000862231731179X-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:851107
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CARBON : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CARBON : 2015
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21