000851115 001__ 851115 000851115 005__ 20240712113105.0 000851115 0247_ $$2doi$$a10.1016/j.jpowsour.2017.05.092 000851115 0247_ $$2ISSN$$a0378-7753 000851115 0247_ $$2ISSN$$a1873-2755 000851115 0247_ $$2WOS$$aWOS:000403548200057 000851115 037__ $$aFZJ-2018-04817 000851115 082__ $$a620 000851115 1001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b0$$eCorresponding author$$ufzj 000851115 245__ $$aImproving cycle life of layered lithium transition metal oxide (LiMO2 ) based positive electrodes for Li ion batteries by smart selection of the electrochemical charge conditions 000851115 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017 000851115 3367_ $$2DRIVER$$aarticle 000851115 3367_ $$2DataCite$$aOutput Types/Journal article 000851115 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534249797_21736 000851115 3367_ $$2BibTeX$$aARTICLE 000851115 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000851115 3367_ $$00$$2EndNote$$aJournal Article 000851115 520__ $$aIncreasing the specific energy of a lithium ion battery and maintaining its cycle life is a predominant goal and major challenge for electrochemical energy storage applications. Focusing on the positive electrode as the specific energy bottleneck, cycle life characteristics of promising layered oxide type active materials (LiMO2) has been thoroughly investigated. Comparing the variety of LiMO2 compositions, it could be shown that the “Ni-rich” (Ni ≥ 60% for M in LiMO2) electrodes expectably revealed best performance compromises between specific energy and cycle life at 20 °C, but only LiNi0.6Mn0.2Co0.2O2 (NMC622) could also maintain sufficient cycle performance at elevated temperatures. Focusing on NMC622, it could be demonstrated that the applied electrochemical conditions (charge capacity, delithiation amount) in the formation cycles significantly influence the subsequent cycling performance. Moreover, the insignificant transition metal dissolution, demonstrated by means of total X-ray fluorescence (TXRF) technique, and unchanged lithiation degree in the discharged state, determined by the measurement of the Li+ content by means of the inductively coupled plasma optical emission spectroscopy (ICP-OES) technique, pointed to a delithiation (charge) hindrance capacity fade mechanism. Considering these insights, thoughtful modifications of the electrochemical charge conditions could significantly prolong the cycle life. 000851115 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000851115 588__ $$aDataset connected to CrossRef 000851115 7001_ $$0P:(DE-HGF)0$$aEvertz, Marco$$b1 000851115 7001_ $$0P:(DE-HGF)0$$aStreipert, Benjamin$$b2 000851115 7001_ $$0P:(DE-HGF)0$$aWagner, Ralf$$b3 000851115 7001_ $$0P:(DE-HGF)0$$aNowak, Sascha$$b4 000851115 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b5$$ufzj 000851115 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b6$$eCorresponding author$$ufzj 000851115 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2017.05.092$$gVol. 359, p. 458 - 467$$p458 - 467$$tJournal of power sources$$v359$$x0378-7753$$y2017 000851115 8564_ $$uhttps://juser.fz-juelich.de/record/851115/files/1-s2.0-S0378775317307437-main.pdf$$yRestricted 000851115 8564_ $$uhttps://juser.fz-juelich.de/record/851115/files/1-s2.0-S0378775317307437-main.gif?subformat=icon$$xicon$$yRestricted 000851115 8564_ $$uhttps://juser.fz-juelich.de/record/851115/files/1-s2.0-S0378775317307437-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000851115 8564_ $$uhttps://juser.fz-juelich.de/record/851115/files/1-s2.0-S0378775317307437-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000851115 8564_ $$uhttps://juser.fz-juelich.de/record/851115/files/1-s2.0-S0378775317307437-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000851115 8564_ $$uhttps://juser.fz-juelich.de/record/851115/files/1-s2.0-S0378775317307437-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000851115 909CO $$ooai:juser.fz-juelich.de:851115$$pVDB 000851115 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b0$$kFZJ 000851115 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b5$$kFZJ 000851115 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b6$$kFZJ 000851115 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000851115 9141_ $$y2018 000851115 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2015 000851115 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000851115 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000851115 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000851115 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000851115 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000851115 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000851115 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000851115 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000851115 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000851115 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000851115 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000851115 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2015 000851115 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 000851115 980__ $$ajournal 000851115 980__ $$aVDB 000851115 980__ $$aI:(DE-Juel1)IEK-12-20141217 000851115 980__ $$aUNRESTRICTED 000851115 981__ $$aI:(DE-Juel1)IMD-4-20141217