000851115 001__ 851115
000851115 005__ 20240712113105.0
000851115 0247_ $$2doi$$a10.1016/j.jpowsour.2017.05.092
000851115 0247_ $$2ISSN$$a0378-7753
000851115 0247_ $$2ISSN$$a1873-2755
000851115 0247_ $$2WOS$$aWOS:000403548200057
000851115 037__ $$aFZJ-2018-04817
000851115 082__ $$a620
000851115 1001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b0$$eCorresponding author$$ufzj
000851115 245__ $$aImproving cycle life of layered lithium transition metal oxide (LiMO2 ) based positive electrodes for Li ion batteries by smart selection of the electrochemical charge conditions
000851115 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000851115 3367_ $$2DRIVER$$aarticle
000851115 3367_ $$2DataCite$$aOutput Types/Journal article
000851115 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534249797_21736
000851115 3367_ $$2BibTeX$$aARTICLE
000851115 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851115 3367_ $$00$$2EndNote$$aJournal Article
000851115 520__ $$aIncreasing the specific energy of a lithium ion battery and maintaining its cycle life is a predominant goal and major challenge for electrochemical energy storage applications. Focusing on the positive electrode as the specific energy bottleneck, cycle life characteristics of promising layered oxide type active materials (LiMO2) has been thoroughly investigated. Comparing the variety of LiMO2 compositions, it could be shown that the “Ni-rich” (Ni ≥ 60% for M in LiMO2) electrodes expectably revealed best performance compromises between specific energy and cycle life at 20 °C, but only LiNi0.6Mn0.2Co0.2O2 (NMC622) could also maintain sufficient cycle performance at elevated temperatures. Focusing on NMC622, it could be demonstrated that the applied electrochemical conditions (charge capacity, delithiation amount) in the formation cycles significantly influence the subsequent cycling performance. Moreover, the insignificant transition metal dissolution, demonstrated by means of total X-ray fluorescence (TXRF) technique, and unchanged lithiation degree in the discharged state, determined by the measurement of the Li+ content by means of the inductively coupled plasma optical emission spectroscopy (ICP-OES) technique, pointed to a delithiation (charge) hindrance capacity fade mechanism. Considering these insights, thoughtful modifications of the electrochemical charge conditions could significantly prolong the cycle life.
000851115 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851115 588__ $$aDataset connected to CrossRef
000851115 7001_ $$0P:(DE-HGF)0$$aEvertz, Marco$$b1
000851115 7001_ $$0P:(DE-HGF)0$$aStreipert, Benjamin$$b2
000851115 7001_ $$0P:(DE-HGF)0$$aWagner, Ralf$$b3
000851115 7001_ $$0P:(DE-HGF)0$$aNowak, Sascha$$b4
000851115 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b5$$ufzj
000851115 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b6$$eCorresponding author$$ufzj
000851115 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2017.05.092$$gVol. 359, p. 458 - 467$$p458 - 467$$tJournal of power sources$$v359$$x0378-7753$$y2017
000851115 8564_ $$uhttps://juser.fz-juelich.de/record/851115/files/1-s2.0-S0378775317307437-main.pdf$$yRestricted
000851115 8564_ $$uhttps://juser.fz-juelich.de/record/851115/files/1-s2.0-S0378775317307437-main.gif?subformat=icon$$xicon$$yRestricted
000851115 8564_ $$uhttps://juser.fz-juelich.de/record/851115/files/1-s2.0-S0378775317307437-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000851115 8564_ $$uhttps://juser.fz-juelich.de/record/851115/files/1-s2.0-S0378775317307437-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000851115 8564_ $$uhttps://juser.fz-juelich.de/record/851115/files/1-s2.0-S0378775317307437-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000851115 8564_ $$uhttps://juser.fz-juelich.de/record/851115/files/1-s2.0-S0378775317307437-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851115 909CO $$ooai:juser.fz-juelich.de:851115$$pVDB
000851115 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b0$$kFZJ
000851115 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b5$$kFZJ
000851115 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b6$$kFZJ
000851115 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851115 9141_ $$y2018
000851115 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2015
000851115 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851115 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851115 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000851115 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000851115 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000851115 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851115 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851115 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851115 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851115 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851115 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000851115 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2015
000851115 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000851115 980__ $$ajournal
000851115 980__ $$aVDB
000851115 980__ $$aI:(DE-Juel1)IEK-12-20141217
000851115 980__ $$aUNRESTRICTED
000851115 981__ $$aI:(DE-Juel1)IMD-4-20141217