000851116 001__ 851116
000851116 005__ 20240712113106.0
000851116 0247_ $$2doi$$a10.1039/C7CP03072J
000851116 0247_ $$2ISSN$$a0005-9021
000851116 0247_ $$2ISSN$$a0372-8323
000851116 0247_ $$2ISSN$$a0372-8382
000851116 0247_ $$2ISSN$$a0940-483X
000851116 0247_ $$2ISSN$$a2367-1491
000851116 0247_ $$2pmid$$apmid:28597888
000851116 0247_ $$2WOS$$aWOS:000403965500050
000851116 0247_ $$2altmetric$$aaltmetric:20949064
000851116 037__ $$aFZJ-2018-04818
000851116 082__ $$a540
000851116 1001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, J.$$b0$$eCorresponding author
000851116 245__ $$aDetermining oxidative stability of battery electrolytes: validity of common electrochemical stability window (ESW) data and alternative strategies
000851116 260__ $$aCambridge$$bRSC Publ.$$c2017
000851116 3367_ $$2DRIVER$$aarticle
000851116 3367_ $$2DataCite$$aOutput Types/Journal article
000851116 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534249893_29998
000851116 3367_ $$2BibTeX$$aARTICLE
000851116 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851116 3367_ $$00$$2EndNote$$aJournal Article
000851116 520__ $$aIncreasing the operation voltage of electrochemical energy storage devices is a viable measure to realize higher specific energies and energy densities. A sufficient oxidative stability of electrolytes is the predominant requirement for successful high voltage applicability. The common method to investigate oxidative stability of LIB electrolytes is related to determination of the electrochemical stability window (ESW), on e.g. Pt or LiMn2O4 electrodes. However, the transferability of the obtained results to practical systems is questionable for several reasons. In this work, we evaluated the validity of the potentiodynamic based ESW method by comparing the obtained data with the results of galvanostatic based techniques, applied on commercial positive electrodes. We demonstrated that the oxidative stabilities, determined by the two techniques, are in good accordance with each other. However, the investigation of electrolytes being incompatible to Li metal, renders conventional ESW measurements useless when metallic Li is used as counter – and reference electrode in the ESW setup. For this reason, we introduced an alternative setup based on Li4Ti5O12 full cells. On the example of a butyronitrile-based electrolyte, we finally demonstrated that this electrolyte is not only reductively but also oxidatively less stable than common LiPF6/organic carbonate based electrolytes.
000851116 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851116 588__ $$aDataset connected to CrossRef
000851116 7001_ $$0P:(DE-HGF)0$$aStreipert, B.$$b1
000851116 7001_ $$0P:(DE-HGF)0$$aRöser, S.$$b2
000851116 7001_ $$0P:(DE-HGF)0$$aWagner, R.$$b3
000851116 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b4$$ufzj
000851116 7001_ $$0P:(DE-Juel1)166130$$aWinter, M.$$b5$$eCorresponding author$$ufzj
000851116 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C7CP03072J$$gVol. 19, no. 24, p. 16078 - 16086$$n24$$p16078 - 16086$$tPhysical chemistry, chemical physics$$v19$$x1463-9076$$y2017
000851116 8564_ $$uhttps://juser.fz-juelich.de/record/851116/files/c7cp03072j.pdf$$yRestricted
000851116 8564_ $$uhttps://juser.fz-juelich.de/record/851116/files/c7cp03072j.gif?subformat=icon$$xicon$$yRestricted
000851116 8564_ $$uhttps://juser.fz-juelich.de/record/851116/files/c7cp03072j.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000851116 8564_ $$uhttps://juser.fz-juelich.de/record/851116/files/c7cp03072j.jpg?subformat=icon-180$$xicon-180$$yRestricted
000851116 8564_ $$uhttps://juser.fz-juelich.de/record/851116/files/c7cp03072j.jpg?subformat=icon-640$$xicon-640$$yRestricted
000851116 8564_ $$uhttps://juser.fz-juelich.de/record/851116/files/c7cp03072j.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851116 909CO $$ooai:juser.fz-juelich.de:851116$$pVDB
000851116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b0$$kFZJ
000851116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b4$$kFZJ
000851116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b5$$kFZJ
000851116 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851116 9141_ $$y2018
000851116 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851116 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000851116 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2015
000851116 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851116 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851116 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000851116 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851116 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851116 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851116 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851116 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851116 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851116 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000851116 980__ $$ajournal
000851116 980__ $$aVDB
000851116 980__ $$aI:(DE-Juel1)IEK-12-20141217
000851116 980__ $$aUNRESTRICTED
000851116 981__ $$aI:(DE-Juel1)IMD-4-20141217