000851118 001__ 851118
000851118 005__ 20240712113049.0
000851118 0247_ $$2doi$$a10.1002/admi.201700166
000851118 0247_ $$2Handle$$a2128/19594
000851118 0247_ $$2WOS$$aWOS:000408042000004
000851118 037__ $$aFZJ-2018-04820
000851118 082__ $$a540
000851118 1001_ $$0P:(DE-HGF)0$$aBecking, Jens$$b0
000851118 245__ $$aLithium-Metal Foil Surface Modification: An Effective Method to Improve the Cycling Performance of Lithium-Metal Batteries
000851118 260__ $$aWeinheim$$bWiley-VCH$$c2017
000851118 3367_ $$2DRIVER$$aarticle
000851118 3367_ $$2DataCite$$aOutput Types/Journal article
000851118 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534250275_29998
000851118 3367_ $$2BibTeX$$aARTICLE
000851118 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851118 3367_ $$00$$2EndNote$$aJournal Article
000851118 520__ $$aLithium metal as an electrode material possesses a native surface film, which leads to a rough surface and this has a negative impact on the cycling behavior. A simple, fast, and reproducible technique is shown, which makes it possible to flatten and thin the native surface film of the lithium‐metal anode. Atomic force microscopy and scanning electron microscopy images are presented to verify the success of the method and X‐ray photoelectron spectroscopy measurements reveal that the chemical composition of the lithium surface is also changed. Furthermore, galvanostatic measurements indicate superior cycling behavior of the surface modified electrodes compared to the as‐received ones. These results demonstrate that the native surface film plays a key role in the application of lithium metal as an anode material for lithium‐metal batteries and that the shown surface modification method is an excellent tool to obtain better performing Li metal electrodes.
000851118 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851118 588__ $$aDataset connected to CrossRef
000851118 7001_ $$0P:(DE-HGF)0$$aGröbmeyer, Albert$$b1
000851118 7001_ $$0P:(DE-HGF)0$$aKolek, Martin$$b2
000851118 7001_ $$0P:(DE-HGF)0$$aRodehorst, Uta$$b3
000851118 7001_ $$0P:(DE-HGF)0$$aSchulze, Susanne$$b4
000851118 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b5$$ufzj
000851118 7001_ $$0P:(DE-HGF)0$$aBieker, Peter$$b6$$eCorresponding author
000851118 7001_ $$0P:(DE-HGF)0$$aStan, Marian Cristian$$b7
000851118 773__ $$0PERI:(DE-600)2750376-8$$a10.1002/admi.201700166$$gVol. 4, no. 16, p. 1700166 -$$n16$$p1700166 -$$tAdvanced materials interfaces$$v4$$x2196-7350$$y2017
000851118 8564_ $$uhttps://juser.fz-juelich.de/record/851118/files/Becking_et_al-2017-Advanced_Materials_Interfaces.pdf$$yOpenAccess
000851118 8564_ $$uhttps://juser.fz-juelich.de/record/851118/files/Becking_et_al-2017-Advanced_Materials_Interfaces.gif?subformat=icon$$xicon$$yOpenAccess
000851118 8564_ $$uhttps://juser.fz-juelich.de/record/851118/files/Becking_et_al-2017-Advanced_Materials_Interfaces.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000851118 8564_ $$uhttps://juser.fz-juelich.de/record/851118/files/Becking_et_al-2017-Advanced_Materials_Interfaces.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000851118 8564_ $$uhttps://juser.fz-juelich.de/record/851118/files/Becking_et_al-2017-Advanced_Materials_Interfaces.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000851118 8564_ $$uhttps://juser.fz-juelich.de/record/851118/files/Becking_et_al-2017-Advanced_Materials_Interfaces.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000851118 909CO $$ooai:juser.fz-juelich.de:851118$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000851118 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b5$$kFZJ
000851118 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851118 9141_ $$y2018
000851118 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851118 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000851118 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER INTERFACES : 2015
000851118 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851118 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851118 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000851118 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000851118 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851118 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851118 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851118 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000851118 9801_ $$aFullTexts
000851118 980__ $$ajournal
000851118 980__ $$aVDB
000851118 980__ $$aUNRESTRICTED
000851118 980__ $$aI:(DE-Juel1)IEK-12-20141217
000851118 981__ $$aI:(DE-Juel1)IMD-4-20141217