000851120 001__ 851120
000851120 005__ 20240712113106.0
000851120 0247_ $$2doi$$a10.1039/C7EE01535F
000851120 0247_ $$2ISSN$$a1754-5692
000851120 0247_ $$2ISSN$$a1754-5706
000851120 0247_ $$2WOS$$aWOS:000412765600003
000851120 0247_ $$2altmetric$$aaltmetric:22611898
000851120 037__ $$aFZJ-2018-04822
000851120 082__ $$a690
000851120 1001_ $$0P:(DE-HGF)0$$aBeltrop, K.$$b0
000851120 245__ $$aAlternative electrochemical energy storage: potassium-based dual-graphite batteries
000851120 260__ $$aCambridge$$bRSC Publ.$$c2017
000851120 3367_ $$2DRIVER$$aarticle
000851120 3367_ $$2DataCite$$aOutput Types/Journal article
000851120 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1534251500_30797
000851120 3367_ $$2BibTeX$$aARTICLE
000851120 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000851120 3367_ $$00$$2EndNote$$aJournal Article
000851120 520__ $$aIn this contribution, we report for the first time a novel potassium ion-based dual-graphite battery concept (K-DGB), applying graphite as the electrode material for both the anode and cathode. The presented dual-graphite cell utilizes a potassium ion containing, ionic liquid (IL)-based electrolyte, synergetically combining the extraordinary properties of potassium, graphite and ILs in terms of cost effectiveness, sustainability and safety. The IL electrolyte shows a very stable cycling performance in combination with the graphite anode at a so far not reported reversible capacity of ≈230 mA h g−1. A highly reversible capacity of >42 mA h g−1 (with respect to the graphite cathode) even at a current of 250 mA g−1, and a Coulombic efficiency (CE) exceeding 99% in a potential range from 3.4 V to 5.0 V vs. K/K+ represent the corner pillars of this innovative battery technology. The very promising electrochemical performance is further emphasized by a capacity retention of 95% after 1500 cycles. Furthermore, the electrochemical formation of a stage-1 potassium graphite intercalation compound (K-GIC) from an IL electrolyte, resulting in a stoichiometry of KC8 is presented in this work for the first time. The presented results shed new light on an alternative energy storage technology, especially in view of stationary (“grid”) energy storage by employing environmentally friendly, abundant and recyclable materials.
000851120 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000851120 588__ $$aDataset connected to CrossRef
000851120 7001_ $$0P:(DE-HGF)0$$aBeuker, S.$$b1
000851120 7001_ $$0P:(DE-HGF)0$$aHeckmann, A.$$b2
000851120 7001_ $$0P:(DE-Juel1)166130$$aWinter, M.$$b3$$eCorresponding author$$ufzj
000851120 7001_ $$00000-0002-2097-5193$$aPlacke, T.$$b4$$eCorresponding author
000851120 773__ $$0PERI:(DE-600)2439879-2$$a10.1039/C7EE01535F$$gVol. 10, no. 10, p. 2090 - 2094$$n10$$p2090 - 2094$$tEnergy & environmental science$$v10$$x1754-5706$$y2017
000851120 8564_ $$uhttps://juser.fz-juelich.de/record/851120/files/c7ee01535f.pdf$$yRestricted
000851120 8564_ $$uhttps://juser.fz-juelich.de/record/851120/files/c7ee01535f.gif?subformat=icon$$xicon$$yRestricted
000851120 8564_ $$uhttps://juser.fz-juelich.de/record/851120/files/c7ee01535f.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000851120 8564_ $$uhttps://juser.fz-juelich.de/record/851120/files/c7ee01535f.jpg?subformat=icon-180$$xicon-180$$yRestricted
000851120 8564_ $$uhttps://juser.fz-juelich.de/record/851120/files/c7ee01535f.jpg?subformat=icon-640$$xicon-640$$yRestricted
000851120 8564_ $$uhttps://juser.fz-juelich.de/record/851120/files/c7ee01535f.pdf?subformat=pdfa$$xpdfa$$yRestricted
000851120 909CO $$ooai:juser.fz-juelich.de:851120$$pVDB
000851120 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
000851120 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000851120 9141_ $$y2018
000851120 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000851120 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERG ENVIRON SCI : 2015
000851120 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000851120 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000851120 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000851120 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000851120 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000851120 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000851120 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000851120 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000851120 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000851120 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000851120 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bENERG ENVIRON SCI : 2015
000851120 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000851120 980__ $$ajournal
000851120 980__ $$aVDB
000851120 980__ $$aI:(DE-Juel1)IEK-12-20141217
000851120 980__ $$aUNRESTRICTED
000851120 981__ $$aI:(DE-Juel1)IMD-4-20141217