001     851120
005     20240712113106.0
024 7 _ |a 10.1039/C7EE01535F
|2 doi
024 7 _ |a 1754-5692
|2 ISSN
024 7 _ |a 1754-5706
|2 ISSN
024 7 _ |a WOS:000412765600003
|2 WOS
024 7 _ |a altmetric:22611898
|2 altmetric
037 _ _ |a FZJ-2018-04822
082 _ _ |a 690
100 1 _ |a Beltrop, K.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Alternative electrochemical energy storage: potassium-based dual-graphite batteries
260 _ _ |a Cambridge
|c 2017
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1534251500_30797
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this contribution, we report for the first time a novel potassium ion-based dual-graphite battery concept (K-DGB), applying graphite as the electrode material for both the anode and cathode. The presented dual-graphite cell utilizes a potassium ion containing, ionic liquid (IL)-based electrolyte, synergetically combining the extraordinary properties of potassium, graphite and ILs in terms of cost effectiveness, sustainability and safety. The IL electrolyte shows a very stable cycling performance in combination with the graphite anode at a so far not reported reversible capacity of ≈230 mA h g−1. A highly reversible capacity of >42 mA h g−1 (with respect to the graphite cathode) even at a current of 250 mA g−1, and a Coulombic efficiency (CE) exceeding 99% in a potential range from 3.4 V to 5.0 V vs. K/K+ represent the corner pillars of this innovative battery technology. The very promising electrochemical performance is further emphasized by a capacity retention of 95% after 1500 cycles. Furthermore, the electrochemical formation of a stage-1 potassium graphite intercalation compound (K-GIC) from an IL electrolyte, resulting in a stoichiometry of KC8 is presented in this work for the first time. The presented results shed new light on an alternative energy storage technology, especially in view of stationary (“grid”) energy storage by employing environmentally friendly, abundant and recyclable materials.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Beuker, S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Heckmann, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Winter, M.
|0 P:(DE-Juel1)166130
|b 3
|e Corresponding author
|u fzj
700 1 _ |a Placke, T.
|0 0000-0002-2097-5193
|b 4
|e Corresponding author
773 _ _ |a 10.1039/C7EE01535F
|g Vol. 10, no. 10, p. 2090 - 2094
|0 PERI:(DE-600)2439879-2
|n 10
|p 2090 - 2094
|t Energy & environmental science
|v 10
|y 2017
|x 1754-5706
856 4 _ |u https://juser.fz-juelich.de/record/851120/files/c7ee01535f.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851120/files/c7ee01535f.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851120/files/c7ee01535f.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851120/files/c7ee01535f.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851120/files/c7ee01535f.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/851120/files/c7ee01535f.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:851120
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERG ENVIRON SCI : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ENERG ENVIRON SCI : 2015
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21